Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 479013, 6 pages
http://dx.doi.org/10.1155/2011/479013
Review Article

A Possible Anticancer Agent, Type III Interferon, Activates Cell Death Pathways and Produces Antitumor Effects

1Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba 260-8717, Japan
2Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
3Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
4Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Owada-Shinden, Yachiyo 276-8524, Japan
5Department of Surgery, School of Medicine, Toho University, Tokyo 143-8540, Japan

Received 30 May 2011; Accepted 29 July 2011

Academic Editor: Luigina Romani

Copyright © 2011 Masatoshi Tagawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. H. H. van Boxel-Dezaire, M. R. S. Rani, and G. R. Stark, “Complex modulation of cell type-specific signaling in response to type I interferons,” Immunity, vol. 25, no. 3, pp. 361–372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. L. C. Platanias, “Mechanisms of type-I- and type-II-interferon-mediated signalling,” Nature Reviews Immunology, vol. 5, no. 5, pp. 375–386, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Li, X. Liu, Y. Zhou, and B. S. Shao, “Interferon-λs: the modulators of antivirus, antitumor, and immune responses,” Journal of Leukocyte Biology, vol. 86, no. 1, pp. 23–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Pestka, C. D. Krause, and M. R. Walter, “Interferons, interferon-like cytokines, and their receptors,” Immunological Reviews, vol. 202, pp. 8–32, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Sheppard, W. Kindsvogel, W. Xu et al., “IL-28, IL-29 and their class II cytokine receptor IL-28R,” Nature Immunology, vol. 4, no. 1, pp. 63–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. V. Kotenko, G. Gallagher, V. V. Baurin et al., “IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex,” Nature Immunology, vol. 4, no. 1, pp. 69–77, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Lasfar, A. Lewis-Antes, S. V. Smirnov et al., “Characterization of the mouse IFN-λ ligand-receptor system: IFN-λs exhibit antitumor activity against B16 melanoma,” Cancer Research, vol. 66, no. 8, pp. 4468–4477, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Robertsen, “The interferon system of teleost fish,” Fish and Shellfish Immunology, vol. 20, no. 2, pp. 172–191, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Lutfalla, H. R. Crollius, N. Stange-Thomann, O. Jaillon, K. Mogensen, and D. Monneron, “Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish,” BMC Genomics, vol. 4, article no. 29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. J. P. Levraud, P. Boudinot, I. Colin et al., “Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system,” Journal of Immunology, vol. 178, no. 7, pp. 4385–4394, 2007. View at Google Scholar · View at Scopus
  11. J. A. Langer, E. C. Cutrone, and S. Kotenko, “The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions,” Cytokine and Growth Factor Reviews, vol. 15, no. 1, pp. 33–48, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. S. V. Kotenko and R. P. Donnelly, “Type III interferons: the interferon lambda family,” in The Interferons: Characterization and Application, A. Meager, Ed., Wiley-VCH, Weinheim, Germany, 2006. View at Google Scholar
  13. K. D. Guenterberg, V. P. Grignol, E. T. Raig et al., “Interleukin-29 binds to melanoma cells Jak-STAT signal transduction and apoptosis,” Molecular Cancer Therapeutics, vol. 9, no. 2, pp. 510–520, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. F. J. D. Mennechet and G. Uzé, “Interferon-λ-treated dendritic cells specifically induce proliferation of FOXP3-expressing suppressor T cells,” Blood, vol. 107, no. 11, pp. 4417–4423, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Kato, O. Takeuchi, S. Sato et al., “Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses,” Nature, vol. 441, no. 1, pp. 101–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Sirén, J. Pirhonen, I. Julkunen, and S. Matikainen, “IFN-α regulates TLR-dependent gene expression of IFN-α, IFN-β, IL-28, and IL-29,” Journal of Immunology, vol. 174, no. 4, pp. 1932–1937, 2005. View at Google Scholar · View at Scopus
  17. S. Brand, F. Beigel, T. Olszak et al., “IL-28A and IL-29 mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic IL-28A expression,” American Journal of Physiology, vol. 289, no. 5, pp. G960–G968, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Mihm, M. Frese, V. Meier et al., “Interferon type I gene expression in chronic hepatitis C,” Laboratory Investigation, vol. 84, no. 9, pp. 1148–1159, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. G. Maher, F. Sheikh, A. J. Scarzello et al., “IFNα and IFNλ differ in their antiproliferative effects and duration of JAK/STAT signaling activity,” Cancer Biology and Therapy, vol. 7, no. 7, pp. 1109–1115, 2008. View at Google Scholar · View at Scopus
  20. Z. Zhou, O. J. Hamming, N. Ank, S. R. Paludan, A. L. Nielsen, and R. Hartmann, “Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases,” Journal of Virology, vol. 81, no. 14, pp. 7749–7758, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Takaoka, S. Hayakawa, H. Yanai et al., “Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence,” Nature, vol. 424, no. 6948, pp. 516–523, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Muñoz-Fontela, S. Macip, L. Martínez-Sobrido et al., “Transcriptional role of p53 in interferon-mediated antiviral immunity,” Journal of Experimental Medicine, vol. 205, no. 8, pp. 1929–1938, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Porta, R. Hadj-Slimane, M. Nejmeddine et al., “Interferons α and γ induce p53-dependent and p53-independent apoptosis, respectively,” Oncogene, vol. 24, no. 4, pp. 605–615, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. Q. Li, K. Kawamura, G. Ma et al., “Interferon-λ induces G1 phase arrest or apoptosis in oesophageal carcinoma cells and produces antitumour effects in combination with anticancer agents,” European Journal of Cancer, vol. 46, no. 1, pp. 180–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Meager, K. Visvalingam, P. Dilger, D. Bryan, and M. Wadhwa, “Biological activity of interleukins-28 and -29: comparison with type I interferons,” Cytokine, vol. 31, no. 2, pp. 109–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Zitzmann, S. Brand, S. Baehs et al., “Novel interferon-λs induce antiproliferative effects in neuroendocrine tumor cells,” Biochemical and Biophysical Research Communications, vol. 344, no. 4, pp. 1334–1341, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Sato, M. Ohtsuki, M. Hata, E. Kobayashi, and T. Murakami, “Antitumor activity of IFN-λ in murine tumor models,” Journal of Immunology, vol. 176, no. 12, pp. 7686–7694, 2006. View at Google Scholar · View at Scopus
  28. L. Dumoutier, A. Tounsi, T. Michiels, C. Sommereyns, S. V. Kotenko, and J. C. Renauld, “Role of the interleukin (IL)-28 receptor tyrosine residues for antiviral and antiproliferative activity of IL-29/interferon-λ1. Similarities with type 1 interferon signaling,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32269–32274, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. W. J. Jordan, J. Eskdale, S. Srinivas et al., “Human interferon lambda-1 (IFN-λ1/IL-29) modulates the Th1/Th2 response,” Genes and Immunity, vol. 8, no. 3, pp. 254–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. V. Pekarek, S. Srinivas, J. Eskdale, and G. Gallagher, “Interferon lambda-1 (IFN-λ1/IL-29) induces ELR- CXC chemokine mRNA in human peripheral blood mononuclear cells, in an IFN-γ-independent manner,” Genes and Immunity, vol. 8, no. 2, pp. 177–180, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Numasaki, M. Tagawa, F. Iwata et al., “IL-28 elicits antitumor responses against murine fibrosarcoma,” Journal of Immunology, vol. 178, no. 8, pp. 5086–5098, 2007. View at Google Scholar · View at Scopus
  32. H. S. Parra, L. Tixi, F. Latteri et al., “Combined regimen of cisplatin, doxorubicin, and α-2b interferon in the treatment of advanced malignant pleural mesothelioma: a phase II multicenter trial of the Italian Group on Rare Tumors (GITR) and the Italian Lung Cancer Task Force (FONICAP),” Cancer, vol. 92, no. 3, pp. 650–656, 2001. View at Publisher · View at Google Scholar · View at Scopus