Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 609579, 12 pages
http://dx.doi.org/10.1155/2011/609579
Review Article

Toll-Like Receptor 4 Activation in Cancer Progression and Therapy

Alja Oblak1,2 and Roman Jerala1,2,3

1Department of Biotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
2EN-FIST Centre of Excellence, 1000 Ljubljana, Slovenia
3Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia

Received 1 July 2011; Accepted 1 September 2011

Academic Editor: David Kaplan

Copyright © 2011 Alja Oblak and Roman Jerala. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. H. Igney and P. H. Krammer, “Immune escape of tumors: apoptosis resistance and tumor counterattack,” Journal of Leukocyte Biology, vol. 71, no. 6, pp. 907–920, 2002. View at Google Scholar · View at Scopus
  2. P. R. Walker, P. Saas, and P. Y. Dietrich, “Tumor expression of Fas ligand (CD95L) and the consequences,” Current Opinion in Immunology, vol. 10, no. 5, pp. 564–572, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kawai and S. Akira, “TLR signaling,” Cell Death and Differentiation, vol. 13, no. 5, pp. 816–825, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. G. Schreibelt, J. Tel, K. H. E. W. J. Sliepen et al., “Toll-like receptor expression and function in human dendritic cell subsets: implications for dendritic cell-based anti-cancer immunotherapy,” Cancer Immunology, Immunotherapy, vol. 59, no. 10, pp. 1573–1582, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. H. Liu, M. Komai-Koma, D. Xu, and F. Y. Liew, “Toll-like receptor 2 signaling modulates the functions of CD4+CD25+ regulatory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 7048–7053, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. R. P. M. Sutmuller, M. H. M. G. M. den Brok, M. Kramer et al., “Toll-like receptor 2 controls expansion and function of regulatory T cells,” Journal of Clinical Investigation, vol. 116, no. 2, pp. 485–494, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. D. Kabelitz, “Expression and function of Toll-like receptors in T lymphocytes,” Current Opinion in Immunology, vol. 19, no. 1, pp. 39–45, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. B. Huang, J. Zhao, H. Li et al., “Toll-like receptors on tumor cells facilitate evasion of immune surveillance,” Cancer Research, vol. 65, no. 12, pp. 5009–5014, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. M. G. Kelly, A. B. Alvero, R. Chen et al., “TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer,” Cancer Research, vol. 66, no. 7, pp. 3859–3868, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. V. Andreani, G. Gatti, L. Simonella, V. Rivero, and M. Maccioni, “Activation of Toll-like receptor 4 on tumor cells in vitro inhibits subsequent tumor growth in vivo,” Cancer Research, vol. 67, no. 21, pp. 10519–10527, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. C. Hashimoto, K. L. Hudson, and K. V. Anderson, “The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein,” Cell, vol. 52, no. 2, pp. 269–279, 1988. View at Google Scholar · View at Scopus
  12. B. Lemaitre, E. Nicolas, L. Michaut, J. M. Reichhart, and J. A. Hoffmann, “The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults,” Cell, vol. 86, no. 6, pp. 973–983, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Shimazu, S. Akashi, H. Ogata et al., “MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1777–1782, 1999. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Viriyakosol, P. S. Tobias, R. L. Kitchens, and T. N. Kirkland, “MD-2 binds to bacterial lipopolysaccharide,” Journal of Biological Chemistry, vol. 276, no. 41, pp. 38044–38051, 2001. View at Google Scholar · View at Scopus
  15. N. Resman, J. Vašl, A. Oblak et al., “Essential roles of hydrophobic residues in both MD-2 and Toll-like receptor 4 in activation by endotoxin,” Journal of Biological Chemistry, vol. 284, no. 22, pp. 15052–15060, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. B. S. Park, D. H. Song, H. M. Kim, B. S. Choi, H. Lee, and J. O. Lee, “The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex,” Nature, vol. 458, no. 7242, pp. 1191–1195, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. H. Björkbacka, K. A. Fitzgerald, F. Huet et al., “The induction of macrophage gene expression by LPS predominantly utilizes Myd88-independent signaling cascades,” Physiological Genomics, vol. 19, pp. 319–330, 2005. View at Publisher · View at Google Scholar · View at PubMed
  18. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,” Cell, vol. 100, no. 1, pp. 57–70, 2000. View at Google Scholar · View at Scopus
  20. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at PubMed
  21. O. M. Grauer, J. W. Molling, E. Bennink et al., “TLR ligands in the local treatment of established intracerebral murine gliomas,” Journal of Immunology, vol. 181, no. 10, pp. 6720–6729, 2008. View at Google Scholar · View at Scopus
  22. Y. Qian, J. Deng, H. Xie et al., “Regulation of TLR4-induced IL-6 response in bladder cancer cells by opposing actions of MAPK and PI3K signaling,” Journal of Cancer Research and Clinical Oncology, vol. 135, no. 3, pp. 379–386, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. H. Yang, H. Zhou, P. Feng et al., “Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article 92, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. X. Y. Tang, Y. Q. Zhu, B. Wei, and H. Wang, “Expression and functional research of TLR4 in human colon carcinoma,” American Journal of the Medical Sciences, vol. 339, no. 4, pp. 319–326, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  25. H. Q. Doan, K. A. Bowen, L. A. Jackson, and B. M. Evers, “Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells,” Anticancer Research, vol. 29, no. 7, pp. 2473–2478, 2009. View at Google Scholar · View at Scopus
  26. M. Szczepański, M. Stelmachowska, Ł. Stryczyński et al., “Assessment of expression of Toll-like receptors 2, 3 and 4 in laryngeal carcinoma,” European Archives of Oto-Rhino-Laryngology, vol. 264, no. 5, pp. 525–530, 2007. View at Publisher · View at Google Scholar · View at PubMed
  27. M. Molteni, D. Marabella, C. Orlandi, and C. Rossetti, “Melanoma cell lines are responsive in vitro to lipopolysaccharide and express TLR-4,” Cancer Letters, vol. 235, no. 1, pp. 75–83, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. Y. Goto, T. Arigami, M. Kitago et al., “Activation of Toll-like receptors 2, 3, and 4 on human melanoma cells induces inflammatory factors,” Molecular Cancer Therapeutics, vol. 7, no. 11, pp. 3642–3653, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. F. Hassan, S. Islam, G. Tumurkhuu et al., “Intracellular expression of Toll-like receptor 4 in neuroblastoma cells and their unresponsiveness to lipopolysaccharide,” BMC Cancer, vol. 6, article 281, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. M. Szajnik, M. J. Szczepanski, M. Czystowska et al., “TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer,” Oncogene, vol. 28, no. 49, pp. 4353–4363, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. M. Zhou, M. M. McFarland-Mancini, H. M. Funk, N. Husseinzadeh, T. Mounajjed, and A. F. Drew, “Toll-like receptor expression in normal ovary and ovarian tumors,” Cancer Immunology, Immunotherapy, vol. 58, no. 9, pp. 1375–1385, 2009. View at Publisher · View at Google Scholar · View at PubMed
  32. V. Bronte, P. Serafini, A. Mazzoni, D. M. Segal, and P. Zanovello, “L-arginine metabolism in myeloid cells controls T-lymphocyte functions,” Trends in Immunology, vol. 24, no. 6, pp. 302–306, 2003. View at Google Scholar · View at Scopus
  33. S. J. Park, T. Nakagawa, H. Kitamura et al., “IL-6 regulates in vivo dendritic cell differentiation through STAT3 activation,” Journal of Immunology, vol. 173, no. 6, pp. 3844–3854, 2004. View at Google Scholar · View at Scopus
  34. R. Sun, Z. Tian, S. Kulkarni, and B. Gao, “IL-6 prevents T cell-mediated hepatitis via inhibition of NKT cells in CD4+ T cell- and STAT3-dependent manners,” Journal of Immunology, vol. 172, no. 9, pp. 5648–5655, 2004. View at Google Scholar · View at Scopus
  35. M. Xu, I. Mizoguchi, N. Morishima, Y. Chiba, J. Mizuguchi, and T. Yoshimoto, “Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27,” Clinical and Developmental Immunology, vol. 2010, Article ID 832454, 9 pages, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. Y. Nishioka, H. Wen, K. Mitani et al., “Differential effects of IL-12 on the generation of alloreactive CTL mediated by murine and human dendritic cells: a critical role for nitric oxide,” Journal of Leukocyte Biology, vol. 73, no. 5, pp. 621–629, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. H. K. Koblish, C. A. Hunter, M. Wysocka, G. Trinchieri, and W. M. F. Lee, “Immune suppression by recombinant interleukin (rIL)-12 involves interferon γ induction of nitric oxide synthase 2 (iNOS) activity: inhibitors of NO generation reveal the extent of rIL-12 vaccine adjuvant effect,” Journal of Experimental Medicine, vol. 188, no. 9, pp. 1603–1610, 1998. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. Pei, D. Lin, X. Song, H. Li, and H. Yao, “TLR4 signaling promotes the expression of VEGF and TGFβ1 in human prostate epithelial PC3 cells induced by lipopolysaccharide,” Cellular Immunology, vol. 254, no. 1, pp. 20–27, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. N. Simiantonaki, U. Kurzik-Dumke, G. Karyofylli, C. Jayasinghe, R. Michel-Schmidt, and C. J. Kirkpatrick, “Reduced expression of TLR4 is associated with the metastatic status of human colorectal cancer,” International Journal of Molecular Medicine, vol. 20, no. 1, pp. 21–29, 2007. View at Google Scholar · View at Scopus
  40. W. Kanczkowski, P. Tymoszuk, M. Ehrhart-Bornstein, M. P. Wirth, K. Zacharowski, and S. R. Bornstein, “Abrogation of TLR4 and CD14 expression and signaling in human adrenocortical tumors,” Journal of Clinical Endocrinology and Metabolism, vol. 95, no. 12, pp. E421–E429, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. S. González-Reyes, L. Marín, L. González et al., “Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis,” BMC Cancer, vol. 10, article 665, 2010. View at Publisher · View at Google Scholar · View at PubMed
  42. B. Schmaußer, M. Andrulis, S. Endrich, H.-K. Müller-Hermelink, and M. Eck, “Toll-like receptors TLR4, TLR5 and TLR9 on gastric carcinoma cells: an implication for interaction with Helicobacter pylori,” International Journal of Medical Microbiology, vol. 295, no. 3, pp. 179–185, 2005. View at Publisher · View at Google Scholar
  43. Y. B. Zhang, F. L. He, M. Fang et al., “Increased expression of Toll-like receptors 4 and 9 in human lung cancer,” Molecular Biology Reports, vol. 36, no. 6, pp. 1475–1481, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. S. González-Reyes, J. M. Fernández, L. O. González et al., “Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence,” Cancer Immunology, Immunotherapy, vol. 60, no. 2, pp. 217–226, 2011. View at Publisher · View at Google Scholar · View at PubMed
  45. R. Pandey, V. Misra, S. P. Misra, M. Dwivedi, A. Kumar, and B. K. Tiwari, “Helicobacter pylori and gastric cancer,” Asian Pacific Journal of Cancer Prevention, vol. 11, no. 3, pp. 583–588, 2010. View at Google Scholar · View at Scopus
  46. T. Ogawa, Y. Asai, Y. Sakai et al., “Endotoxic and immunobiological activities of a chemically synthesized lipid A of Helicobacter pylori strain 206-1,” FEMS Immunology and Medical Microbiology, vol. 36, no. 1-2, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. S. I. Yokota, T. Okabayashi, M. Rehli, N. Fujii, and K. I. Amano, “Helicobacter pylori lipopolysaccharides upregulate Toll-like receptor 4 expression and proliferation of gastric epithelial cells via the MEK1/2-ERK1/2 mitogen-activated protein kinase pathway,” Infection and Immunity, vol. 78, no. 1, pp. 468–476, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. B. Su, P. J. M. Ceponis, S. Lebel, H. Huynh, and P. M. Sherman, “Helicobacter pylori activates Toll-like receptor 4 expression in gastrointestinal epithelial cells,” Infection and Immunity, vol. 71, no. 6, pp. 3496–3502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  49. S. N. Gyde, P. Prior, R. N. Allan et al., “Colorectal cancer in ulcerative colitis: a cohort study of primary referrals from three centres,” Gut, vol. 29, no. 2, pp. 206–217, 1988. View at Google Scholar · View at Scopus
  50. J. A. Eaden, K. R. Abrams, and J. F. Mayberry, “The risk of colorectal cancer in ulcerative colitis: a meta-analysis,” Gut, vol. 48, no. 4, pp. 526–535, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Fukata, Y. Hernandez, D. Conduah et al., “Innate immune signaling by Toll-like receptor-4 (TLR4) shapes the inflammatory microenvironment in colitis-associated tumors,” Inflammatory Bowel Diseases, vol. 15, no. 7, pp. 997–1006, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. M. Fukata, A. Chen, A. S. Vamadevan et al., “Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors,” Gastroenterology, vol. 133, no. 6, pp. 1869–e2, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. A. Greenhough, H. J. M. Smartt, A. E. Moore et al., “The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment,” Carcinogenesis, vol. 30, no. 3, pp. 377–386, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. Y. Hernandez, J. Sotolongo, K. Breglio et al., “The role of prostaglandin E2 (PGE 2) in Toll-like receptor 4 (TLR4)-mediated colitis-associated neoplasia,” BMC Gastroenterology, vol. 10, article 82, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. R. Cammarota, V. Bertolini, G. Pennesi et al., “The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker,” Journal of Translational Medicine, vol. 8, article 112, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. K. Starska, E. Forma, I. Lewy-Trenda et al., “The expression of SOCS1 and TLR4-NFκB pathway molecules in neoplastic cells as potential biomarker for the aggressive tumor phenotype in laryngeal carcinoma,” Folia Histochemica et Cytobiologica, vol. 47, no. 3, pp. 401–410, 2009. View at Publisher · View at Google Scholar · View at PubMed
  57. E. L. Wang, Z. R. Qian, M. Nakasono et al., “High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer,” British Journal of Cancer, vol. 102, no. 5, pp. 908–915, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. T. M. Earl, I. B. Nicoud, J. M. Pierce et al., “Silencing of TLR4 decreases liver tumor burden in a murine model of colorectal metastasis and hepatic steatosis,” Annals of Surgical Oncology, vol. 16, no. 4, pp. 1043–1050, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. D. Hua, M. Y. Liu, Z. D. Cheng et al., “Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity,” Molecular Immunology, vol. 46, no. 15, pp. 2876–2884, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. G. Gatti, A. A. Quintar, V. Andreani et al., “Expression of Toll-like receptor 4 in the prostate gland and its association with the severity of prostate cancer,” Prostate, vol. 69, no. 13, pp. 1387–1397, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. S. D. Kundu, C. Lee, B. K. Billips et al., “The Toll-like receptor pathway: a novel mechanism of infection-induced carcinogenesis of prostate epithelial cells,” Prostate, vol. 68, no. 2, pp. 223–229, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. L. Yu, L. Wang, M. Li, J. Zhong, Z. Wang, and S. Chen, “Expression of Toll-like receptor 4 is down-regulated during progression of cervical neoplasia,” Cancer Immunology, Immunotherapy, vol. 59, no. 7, pp. 1021–1028, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  63. G. P. Pidgeon, J. H. Harmey, E. Kay, M. Da Costa, H. P. Redmond, and D. J. Bouchier-Hayes, “The role of endotoxin/lipopolysaccharide in surgically induced tumour growth in a murine model of metastatic disease,” British Journal of Cancer, vol. 81, no. 8, pp. 1311–1317, 1999. View at Google Scholar · View at Scopus
  64. S. D. Killeen, J. H. Wang, E. J. Andrews, and H. P. Redmond, “Bacterial endotoxin enhances colorectal cancer cell adhesion and invasion through TLR-4 and NF-B-dependent activation of the urokinase plasminogen activator system,” British Journal of Cancer, vol. 100, no. 10, pp. 1589–1602, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. C. P. Hodgkinson, R. C. Laxton, K. Patel, and S. Ye, “Advanced glycation end-product of low density lipoprotein activates the Toll-like 4 receptor pathway implications for diabetic atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 12, pp. 2275–2281, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. Y. Y. Ji, J. T. Liu, N. Liu, Z. D. Wang, and C. H. Liu, “PPARα activator fenofibrate modulates angiotensin II-induced inflammatory responses in vascular smooth muscle cells via the TLR4-dependent signaling pathway,” Biochemical Pharmacology, vol. 78, no. 9, pp. 1186–1197, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. Y. Ji, J. Liu, Z. Wang, and N. Liu, “Angiotensin II induces inflammatory response partly via Toll-like receptor 4-dependent signaling pathway in vascular smooth muscle cells,” Cellular Physiology and Biochemistry, vol. 23, no. 4-6, pp. 265–276, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. A. Biragyn, P. A. Ruffini, C. A. Leifer et al., “Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2,” Science, vol. 298, no. 5595, pp. 1025–1029, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. A. Biragyn, M. Coscia, K. Nagashima, M. Sanford, H. A. Young, and P. Olkhanud, “Murine β-defensin 2 promotes TLR-4/MyD88-mediated and NF-κB-dependent atypical death of APCs via activation of TNFR2,” Journal of Leukocyte Biology, vol. 83, no. 4, pp. 998–1008, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  70. L. Schaefer, A. Babelova, E. Kiss et al., “The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages,” Journal of Clinical Investigation, vol. 115, no. 8, pp. 2223–2233, 2005. View at Publisher · View at Google Scholar · View at PubMed
  71. A. Babelova, K. Moreth, W. Tsalastra-Greul et al., “Biglycan, a danger signal that activates the NLRP3 inflammasome via Toll-like and P2X receptors,” Journal of Biological Chemistry, vol. 284, no. 36, pp. 24035–24048, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  72. J. M. Ehrchen, C. Sunderkötter, D. Foell, T. Vogl, and J. Roth, “The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 557–566, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. H. Fischer, P. Ellström, K. Ekström, L. Gustafsson, M. Gustafsson, and C. Svanborg, “Ceramide as a TLR4 agonist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4,” Cellular Microbiology, vol. 9, no. 5, pp. 1239–1251, 2007. View at Publisher · View at Google Scholar · View at PubMed
  74. S. T. Smiley, J. A. King, and W. W. Hancock, “Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4,” Journal of Immunology, vol. 167, no. 5, pp. 2887–2894, 2001. View at Google Scholar · View at Scopus
  75. D. B. Kuhns, D. A. L. Priel, and J. I. Gallin, “Induction of human monocyte interleukin (IL)-8 by fibrinogen through the Toll-like receptor pathway,” Inflammation, vol. 30, no. 5, pp. 178–188, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. Y. Okamura, M. Watari, E. S. Jerud et al., “The extra domain A of fibronectin activates Toll-like receptor 4,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 10229–10233, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. S. P. Gondokaryono, H. Ushio, F. Niyonsaba et al., “The extra domain A of fibronectin stimulates murine mast cells via Toll-like receptor 4,” Journal of Leukocyte Biology, vol. 82, no. 3, pp. 657–665, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. J. S. Park, D. Svetkauskaite, Q. He et al., “Involvement of Toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein,” Journal of Biological Chemistry, vol. 279, no. 9, pp. 7370–7377, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  79. S. P. Jong, F. Gamboni-Robertson, Q. He et al., “High mobility group box 1 protein interacts with multiple Toll-like receptors,” American Journal of Physiology, vol. 290, no. 3, pp. C917–C924, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  80. M. Yu, H. Wang, A. Ding et al., “HMGB1 signals through Toll-like receptor (TLR) 4 and TLR2,” Shock, vol. 26, no. 2, pp. 174–179, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. D. Mittal, F. Saccheri, E. Vénéreau, T. Pusterla, M. E. Bianchi, and M. Rescigno, “TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells,” The EMBO Journal, vol. 29, no. 13, pp. 2242–2252, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. K. Ohashi, V. Burkart, S. Flohé, and H. Kolb, “Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex,” Journal of Immunology, vol. 164, no. 2, pp. 558–561, 2000. View at Google Scholar · View at Scopus
  83. A. Asea, M. Rehli, E. Kabingu et al., “Novel signal transduction pathway utilized by extracellular HSP70. Role of Toll-like receptor (TLR) 2 and TLR4,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 15028–15034, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. R. M. Vabulas, P. Ahmad-Nejad, S. Ghose, C. J. Kirschning, R. D. Issels, and H. Wagner, “HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway,” Journal of Biological Chemistry, vol. 277, no. 17, pp. 15107–15112, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. R. de Graaf, G. Kloppenburg, P. J. H. M. Kitslaar, C. A. Bruggeman, and F. Stassen, “Human heat shock protein 60 stimulates vascular smooth muscle cell proliferation through Toll-like receptors 2 and 4,” Microbes and Infection, vol. 8, no. 7, pp. 1859–1865, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. G. B. Johnson, G. J. Brunn, Y. Kodaira, and J. L. Platt, “Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4,” Journal of Immunology, vol. 168, no. 10, pp. 5233–5239, 2002. View at Google Scholar · View at Scopus
  87. C. Termeer, F. Benedix, J. Sleeman et al., “Oligosaccharides of hyaluronan activate dendritic cells via Toll-like receptor 4,” Journal of Experimental Medicine, vol. 195, no. 1, pp. 99–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  88. K. R. Taylor, J. M. Trowbridge, J. A. Rudisill, C. C. Termeer, J. C. Simon, and R. L. Gallo, “Hyaluronan fragments stimulate endothelial recognition of injury through TLR4,” Journal of Biological Chemistry, vol. 279, no. 17, pp. 17079–17084, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  89. D. Jiang, J. Liang, J. Fan et al., “Regulation of lung injury and repair by Toll-like receptors and hyaluronan,” Nature Medicine, vol. 11, no. 11, pp. 1173–1179, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. K. R. Taylor, K. Yamasaki, K. A. Radek et al., “Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2,” Journal of Biological Chemistry, vol. 282, no. 25, pp. 18265–18275, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  91. S. Gariboldi, M. Palazzo, L. Zanobbio et al., “Low molecular weight hyaluronic acid increases the self-defense of skin epithelium by induction of β-defensin 2 via TLR2 and TLR4,” Journal of Immunology, vol. 181, no. 3, pp. 2103–2110, 2008. View at Google Scholar · View at Scopus
  92. M. Shimada, Y. Yanai, T. Okazaki et al., “Hyaluronan fragments generated by sperm-secreted hyaluronidase stimulate cytokine/chemokine production via the TLR 2 and TLR4 pathway in cumulus cells of ovulated COCs, which may enhance fertilization,” Development, vol. 135, no. 11, pp. 2001–2011, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. Y. I. Miller, S. Viriyakosol, C. J. Binder, J. R. Feramisco, T. N. Kirkland, and J. L. Witztum, “Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells,” Journal of Biological Chemistry, vol. 278, no. 3, pp. 1561–1568, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  94. Y. I. Miller, S. Viriyakosol, D. S. Worrall, A. Boullier, S. Butler, and J. L. Witztum, “Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 6, pp. 1213–1219, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  95. Y. S. Bae, J. H. Lee, S. H. Choi et al., “Macrophages generate reactive oxygen species in response to minimally oxidized low-density lipoprotein: Toll-like receptor 4- and spleen tyrosine kinase-dependent activation of NADPH oxidase 2,” Circulation Research, vol. 104, no. 2, pp. 210–218, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. T. Vogl, K. Tenbrock, S. Ludwig et al., “Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock,” Nature Medicine, vol. 13, no. 9, pp. 1042–1049, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  97. K. A. Walton, X. Hsieh, N. Gharavi et al., “Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8: a role for Toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein,” Journal of Biological Chemistry, vol. 278, no. 32, pp. 29661–29666, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  98. Y. Imai, K. Kuba, G. G. Neely et al., “Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury,” Cell, vol. 133, no. 2, pp. 235–249, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. H. D. Park, Y. Lee, Y. K. Oh et al., “Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation,” Oncogene, vol. 30, pp. 201–211, 2011. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. S. Sandri, D. Rodriguez, E. Gomes, H. P. Monteiro, M. Russo, and A. Campa, “Is serum amyloid A an endogenous TLR4 agonist?” Journal of Leukocyte Biology, vol. 83, no. 5, pp. 1174–1180, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. H. Shi, M. V. Kokoeva, K. Inouye, I. Tzameli, H. Yin, and J. S. Flier, “TLR4 links innate immunity and fatty acid-induced insulin resistance,” Journal of Clinical Investigation, vol. 116, no. 11, pp. 3015–3025, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. L. Guillot, V. Balloy, F. X. McCormack, D. T. Golenbock, M. Chignard, and M. Si-Tahar, “Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4,” Journal of Immunology, vol. 168, no. 12, pp. 5989–5992, 2002. View at Google Scholar · View at Scopus
  103. K. Midwood, S. Sacre, A. M. Piccinini et al., “Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease,” Nature Medicine, vol. 15, no. 7, pp. 774–780, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. C. Erridge, “Endogenous ligands of TLR2 and TLR4: agonists or assistants?” Journal of Leukocyte Biology, vol. 87, no. 6, pp. 989–999, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. G. P. Sims, D. C. Rowe, S. T. Rietdijk, R. Herbst, and A. J. Coyle, “HMGB1 and RAGE in inflammation and cancer,” Annual Review of Immunology, vol. 28, pp. 367–388, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. J. E. Ellerman, C. K. Brown, M. de Vera et al., “Masquerader: high mobility group box-1 and cancer,” Clinical Cancer Research, vol. 13, no. 10, pp. 2836–2848, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  108. J. H. Youn, Y. J. Oh, E. S. Kim, J. E. Choi, and J. S. Shin, “High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes,” Journal of Immunology, vol. 180, no. 7, pp. 5067–5074, 2008. View at Google Scholar · View at Scopus
  109. M.-F. Tsan, “Heat shock proteins and high mobility group box 1 protein lack cytokine function,” Journal of Leukocyte Biology, vol. 89, no. 6, pp. 247–852, 2011. View at Publisher · View at Google Scholar · View at PubMed
  110. H. S. Hreggvidsdottir, T. Östberg, H. Wähämaa et al., “The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 655–662, 2009. View at Publisher · View at Google Scholar · View at PubMed
  111. H. K. Lee, S. Dunzendorfer, K. Soldau, and P. S. Tobias, “Double-stranded RNA-mediated TLR3 activation is enhanced by CD14,” Immunity, vol. 24, no. 2, pp. 153–163, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. C. L. Baumann, I. M. Aspalter, O. Sharif et al., “CD14 is a coreceptor of Toll-like receptors 7 and 9,” Journal of Experimental Medicine, vol. 207, no. 12, pp. 2689–2701, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. S. D. Wright, R. A. Ramos, P. S. Tobias, R. J. Ulevitch, and J. C. Mathison, “CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein,” Science, vol. 249, no. 4975, pp. 1431–1433, 1990. View at Google Scholar · View at Scopus
  114. N. Kadowaki, S. Ho, S. Antonenko et al., “Subsets of human dendritic cell precursors express different Toll-like receptors and respond to different microbial antigens,” Journal of Experimental Medicine, vol. 194, no. 6, pp. 863–869, 2001. View at Publisher · View at Google Scholar · View at Scopus
  115. J. M. Blander and R. Medzhitov, “Toll-dependent selection of microbial antigens for presentation by dendritic cells,” Nature, vol. 440, no. 7085, pp. 808–812, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. M. A. West, R. P. A. Wallin, S. P. Matthews et al., “Enhanced dendritic cell antigen capture via Toll-like receptor-induced actin remodeling,” Science, vol. 305, no. 5687, pp. 1153–1157, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. W. S. Garrett, L. M. Chen, R. Kroschewski et al., “Developmental control of endocytosis in dendritic cells by Cdc42,” Cell, vol. 102, no. 3, pp. 325–334, 2000. View at Google Scholar · View at Scopus
  118. J. M. Blander and R. Medzhitov, “Regulation of phagosome maturation by signals from Toll-like receptors,” Science, vol. 304, no. 5673, pp. 1014–1018, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. D. M. Andrews, A. A. Scalzo, W. M. Yokoyama, M. J. Smyth, and M. A. Degli-Esposti, “Functional interactions between dendritic cells and NK cells during viral infection,” Nature Immunology, vol. 4, no. 2, pp. 175–181, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. T. N. N. Pham, C. Y. Hong, J. J. Min et al., “Enhancement of antitumor effect using dendritic cells activated with natural killer cells in the presence of Toll-like receptor agonist,” Experimental and Molecular Medicine, vol. 42, no. 6, pp. 407–419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. R. J. Sylvester, “Bacillus Calmette-Guérin treatment of non-muscle invasive bladder cancer,” International Journal of Urology, vol. 18, no. 2, pp. 113–120, 2011. View at Publisher · View at Google Scholar · View at PubMed
  123. S. Tsuji, M. Matsumoto, O. Takeuchi et al., “Maturation of human dendritic cells by cell wall skeleton of Mycobacterium boris bacillus Calmette-Guérin: involvement of Toll-like receptors,” Infection and Immunity, vol. 68, no. 12, pp. 6883–6890, 2000. View at Publisher · View at Google Scholar · View at Scopus
  124. S. Roux, L. Apetoh, F. Chalmin et al., “CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer,” Journal of Clinical Investigation, vol. 118, no. 11, pp. 3751–3761, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  125. Y. Ryoma, Y. Moriya, M. Okamoto, I. Kanaya, M. Saito, and M. Sato, “Biological effect of OK-432 (Picibanil) and possible application to dendritic cell therapy,” Anticancer Research, vol. 24, no. 5C, pp. 3295–3301, 2004. View at Google Scholar · View at Scopus
  126. M. Okamoto, T. Oshikawa, T. Tano et al., “Involvement of Toll-like receptor 4 signaling in interferon-γ production and antitumor effect by streptococcal agent OK-432,” Journal of the National Cancer Institute, vol. 95, no. 4, pp. 316–326, 2003. View at Google Scholar · View at Scopus
  127. M. Okamoto, T. Oshikawa, T. Tano et al., “Mechanism of anticancer host response induced by OK-432, a streptococcal preparation, mediated by phagocytosis and Toll-like receptor 4 signaling,” Journal of Immunotherapy, vol. 29, no. 1, pp. 78–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. R. J. North, “Radiation-induced, immunologically mediated regression of an established tumor as an example of successful therapeutic immunomanipulation. Preferential elimination of suppressor T cells allows sustained production of effector T cells,” Journal of Experimental Medicine, vol. 164, no. 5, pp. 1652–1666, 1986. View at Google Scholar · View at Scopus
  129. A. Shigematsu, Y. Adachi, N. Koike-Kiriyama et al., “Effects of low-dose irradiation on enhancement of immunity by dendritic cells,” Journal of Radiation Research, vol. 48, no. 1, pp. 51–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  130. K. W. Kim, S. H. Kim, J. G. Shin et al., “Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity,” International Journal of Cancer, vol. 109, no. 5, pp. 685–690, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. C. M. Paulos, C. Wrzesinski, A. Kaiser et al., “Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2197–2204, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. S. P. Kasturi, I. Skountzou, R. A. Albrecht et al., “Programming the magnitude and persistence of antibody responses with innate immunity,” Nature, vol. 470, no. 7335, pp. 543–550, 2011. View at Publisher · View at Google Scholar · View at PubMed
  133. A. Garin, M. Meyer-Hermann, M. Contie et al., “Toll-like receptor 4 signaling by follicular dendritic cells is pivotal for germinal center onset and affinity maturation,” Immunity, vol. 33, no. 1, pp. 84–95, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. M. E. M. El Shikh, R. M. El Sayed, Y. Wu, A. K. Szakal, and J. G. Tew, “TLR4 on follicular dendritic cells: an activation pathway that promotes accessory activity,” Journal of Immunology, vol. 179, no. 7, pp. 4444–4450, 2007. View at Google Scholar · View at Scopus
  135. V. Mata-Haro, C. Cekic, M. Martin, P. M. Chilton, C. R. Casella, and T. C. Mitchell, “The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4,” Science, vol. 316, no. 5831, pp. 1628–1632, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. C. W. Cluff, “Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results,” Advances in Experimental Medicine and Biology, vol. 667, pp. 111–123, 2009. View at Publisher · View at Google Scholar · View at Scopus