Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 678570, 11 pages
http://dx.doi.org/10.1155/2011/678570
Review Article

Modulation of Cell Death by M. tuberculosis as a Strategy for Pathogen Survival

1Armauer Hansen Research Institute, P.O. Box 1005, Addis Ababa, Ethiopia
2The Centre for Infectious Diseases and International Health, Windeyer Institute of Medical Sciences, Royal Free and University College Medical School, London WC1T 4JF, UK
3Department of Infectious Disease Immunology, Statens Serum Institute, Artillerivej 5, København S, 2300 Copenhagen, Denmark

Received 17 September 2010; Accepted 27 November 2010

Academic Editor: Nicholas West

Copyright © 2011 Markos Abebe et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. W. Borgdorff, K. Floyd, and J. F. Broekmans, “Interventions to reduce tuberculosis mortality and transmission in low- and middle-income countries,” Bulletin of the World Health Organization, vol. 80, no. 3, pp. 217–227, 2002. View at Google Scholar · View at Scopus
  2. C. Dye, S. Scheele, P. Dolin, V. Pathania, and M. C. Raviglione, “Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project,” Journal of the American Medical Association, vol. 282, pp. 677–686, 1999. View at Google Scholar
  3. J. Úriz Ayestarán, J. Repáraz, J. Castiello, and J. Sola, “Tuberculosis in patients with HIV infectionTuberculosis en pacientes infectados por el VIH,” Anales del Sistema Sanitario de Navarra, vol. 30, no. 2, pp. 131–142, 2007. View at Google Scholar · View at Scopus
  4. M. Abebe, T. M. Doherty, L. Wassie et al., “Expression of apoptosis-related genes in an Ethiopian cohort study correlates with tuberculosis clinical status,” European Journal of Immunology, vol. 40, no. 1, pp. 291–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. L. Flynn, M. M. Goldstein, J. Chan et al., “Tumor necrosis factor-α is required in the protective immune response against mycobacterium tuberculosis in mice,” Immunity, vol. 2, no. 6, pp. 561–572, 1995. View at Google Scholar · View at Scopus
  6. V. P. Mohan, C. A. Scanga, K. Yu et al., “Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology,” Infection and Immunity, vol. 69, no. 3, pp. 1847–1855, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ogawa, H. Uchida, Y. Kusumoto, Y. Mori, Y. Yamamura, and S. Hamada, “Increase in tumor necrosis factor alpha- and interleukin-6-secreting cells in peripheral blood mononuclear cells from subjects infected with Mycobacterium tuberculosis,” Infection and Immunity, vol. 59, no. 9, pp. 3021–3025, 1991. View at Google Scholar · View at Scopus
  8. R. Hussain, N. Talat, F. Shahid, and G. Dawood, “Longitudinal tracking of cytokines after acute exposure to tuberculosis: association of distinct cytokine patterns with protection and disease development,” Clinical and Vaccine Immunology, vol. 14, no. 12, pp. 1578–1586, 2007. View at Publisher · View at Google Scholar
  9. I. Kawamura, “Protective immunity against Mycobacterium tuberculosis,” Kekkaku, vol. 81, no. 11, pp. 687–691, 2006. View at Google Scholar · View at Scopus
  10. J. Ma, T. Chen, J. Mandelin et al., “Regulation of macrophage activation,” Cellular and Molecular Life Sciences, vol. 60, no. 11, pp. 2334–2346, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. A. Fletcher, “Correlates of immune protection from tuberculosis,” Current Molecular Medicine, vol. 7, no. 3, pp. 319–325, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Goter-Robinson, S. C. Derrick, A. L. Yang, B. Y. Jeon, and S. L. Morris, “Protection against an aerogenic Mycobacterium tuberculosis infection in BCG-immunized and DNA-vaccinated mice is associated with early type I cytokine responses,” Vaccine, vol. 24, no. 17, pp. 3522–3529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Hervas-Stubbs, L. Majlessi, M. Simsova et al., “High frequency of CD4+ T cells specific for the TB10.4 protein correlates with protection against Mycobacterium tuberculosis infection,” Infection and Immunity, vol. 74, no. 6, pp. 3396–3407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B. M. Sullivan, O. Jobe, V. Lazarevic et al., “Increased susceptibility of mice lacking T-bet to infection with Mycobacterium tuberculosis correlates with increased IL-10 and decreased IFN-γ production,” Journal of Immunology, vol. 175, no. 7, pp. 4593–4602, 2005. View at Google Scholar · View at Scopus
  15. D. N. Dao, L. Kremer, Y. Guérardel et al., “Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages,” Infection and Immunity, vol. 72, no. 4, pp. 2067–2074, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Manca, M. B. Reed, S. Freeman et al., “Differential monocyte activation underlies strain-specific Mycobacterium tuberculosis pathogenesis,” Infection and Immunity, vol. 72, no. 9, pp. 5511–5514, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Reed, P. Domenech, C. Manca et al., “A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response,” Nature, vol. 430, no. 7004, pp. 84–87, 2004. View at Publisher · View at Google Scholar
  18. Y. van Kooyk and T. B. H. Geijtenbeek, “DC-SIGN: escape mechanism for pathogens,” Nature Reviews Immunology, vol. 3, no. 9, pp. 697–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. T. Seah and G. A. W. Rook, “IL-4 influences apoptosis of mycobacterium-reactive lymphocytes in the presence of TNF-α,” Journal of Immunology, vol. 167, no. 3, pp. 1230–1237, 2001. View at Google Scholar · View at Scopus
  20. A. Demissie, M. Abebe, A. Aseffa et al., “Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4δ2,” Journal of Immunology, vol. 172, no. 11, pp. 6938–6943, 2004. View at Google Scholar · View at Scopus
  21. A. Demissie, L. Wassie, M. Abebe et al., “The 6-kilodalton early secreted antigenic target-responsive, asymptomatic contacts of tuberculosis patients express elevated levels of interleukin-4 and reduced levels of gamma interferon,” Infection and Immunity, vol. 74, no. 5, pp. 2817–2822, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. H. A. Fletcher, P. Owiafe, D. Jeffries et al., “Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4δ2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation,” Immunology, vol. 112, no. 4, pp. 669–673, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. D. J. Ordway, L. Costa, M. Martins et al., “Increased interleukin-4 production by CD8 and γδ T cells in health-care workers is associated with the subsequent development of active tuberculosis,” Journal of Infectious Diseases, vol. 190, no. 4, pp. 756–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. D. J. Ordway, L. Pinto, L. Costa et al., “Gamma delta T cell responses associated with the development of tuberculosis in health care workers,” FEMS Immunology and Medical Microbiology, vol. 43, no. 3, pp. 339–350, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Wassie, A. Demissie, A. Aseffa et al., “Ex vivo cytokine mRNA levels correlate with changing clinical status of Ethiopian TB patients and their contacts over time,” PLoS ONE, vol. 3, no. 1, Article ID e1522, 2008. View at Publisher · View at Google Scholar
  26. H. P. Wu, C. L. Wu, C. C. Yu, YU. C. Liu, and D. Y. Chuang, “Efficiency of interleukin-4 expression in patients with tuberculosis and nontubercular pneumonia,” Human Immunology, vol. 68, no. 10, pp. 832–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Gutierrez, S. S. Master, S. B. Singh, G. A. Taylor, M. I. Colombo, and V. Deretic, “Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages,” Cell, vol. 119, no. 6, pp. 753–766, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Kremer, J. Estaquier, E. Brandt, J. C. Ameisen, and C. Locht, “Mycobacterium bovis Bacillus Calmette Guerin infection prevents apoptosis of resting human monocytes,” European Journal of Immunology, vol. 27, no. 9, pp. 2450–2456, 1997. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Bocchino, D. Galati, A. Sanduzzi, V. Colizzi, E. Brunetti, and G. Mancino, “Role of mycobacteria-induced monocyte/macrophage apoptosis in the pathogenesis of human tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 9, no. 4, pp. 375–383, 2005. View at Google Scholar · View at Scopus
  30. M. Rojas, L. F. Barrera, G. Puzo, and L. F. Garcia, “Differential induction of apoptosis by virulent Mycobacterium tuberculosis in resistant and susceptible murine macrophages: role of nitric oxide and mycobacterial products,” Journal of Immunology, vol. 159, no. 3, pp. 1352–1361, 1997. View at Google Scholar · View at Scopus
  31. M. B. Santucci, M. Amicosante, R. Cicconi et al., “Mycobacterium tuberculosis-induced apoptosis in monocytes/macrophages: early membrane modifications and intracellular mycobacterial viability,” Journal of Infectious Diseases, vol. 181, no. 4, pp. 1506–1509, 2000. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Keane, M. K. Balcewicz-Sablinska, H. G. Remold et al., “Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis,” Infection and Immunity, vol. 65, no. 1, pp. 298–304, 1997. View at Google Scholar · View at Scopus
  33. J. Keane, H. G. Remold, and H. Kornfeld, “Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages,” Journal of Immunology, vol. 164, no. 4, pp. 2016–2020, 2000. View at Google Scholar · View at Scopus
  34. S. M. Behar, M. Divangahi, and H. G. Remold, “Evasion of innate immunity by mycobacterium tuberculosis: is death an exit strategy?” Nature Reviews Microbiology, vol. 8, no. 9, pp. 668–674, 2010. View at Publisher · View at Google Scholar
  35. V. Briken and J. L. Miller, “Living on the edge: inhibition of host cell apoptosis by Mycobacterium tuberculosis,” Future Microbiology, vol. 3, no. 4, pp. 415–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Gonzalez-Juarrero, O. C. Turner, J. Turner, P. Marietta, J. V. Brooks, and I. M. Orme, “Temporal and spatial arrangement of lymphocytes within lung granulomas induced by aerosol infection with Mycobacterium tuberculosis,” Infection and Immunity, vol. 69, no. 3, pp. 1722–1728, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. D. G. Russell, C. E. Barry, and J. L. Flynn, “Tuberculosis: what we don't know can, and does, hurt us,” Science, vol. 328, no. 5980, pp. 852–856, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. D. G. Russell, “Mycobacterium tuberculosis: here today, and here tomorrow,” Nature Reviews Molecular Cell Biology, vol. 2, no. 8, pp. 569–577, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Korf, A. Stoltz, J. Verschoor, P. De Baetselier, and J. Grooten, “The Mycobacterium tuberculosis cell wall component mycolic acid elicits pathogen-associated host innate immune responses,” European Journal of Immunology, vol. 35, no. 3, pp. 890–900, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Brosch, A. S. Pym, S. V. Gordon, and S. T. Cole, “The evolution of mycobacterial pathogenicity: clues from comparative genomics,” Trends in Microbiology, vol. 9, no. 9, pp. 452–458, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. I. de Jonge, R. Brosch, P. Brodin, C. Demangel, and S. T. Cole, “Tuberculosis: from genome to vaccine,” Expert Review of Vaccines, vol. 4, no. 4, pp. 541–551, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. J. C. Betts, P. T. Lukey, L. C. Robb, R. A. McAdam, and K. Duncan, “Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling,” Molecular Microbiology, vol. 43, no. 3, pp. 717–731, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. V. Deretic, S. Singh, S. Master et al., “Mycobacterium tuberculosis inhibition of phagolysosome biogenesis and autophagy as a host defence mechanism,” Cellular Microbiology, vol. 8, no. 5, pp. 719–727, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Axelrod, H. Oschkinat, J. Enders et al., “Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide,” Cellular Microbiology, vol. 10, no. 7, pp. 1530–1545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. S. Davis, I. Vergne, S. S. Master, G. B. Kyei, J. Chua, and V. Deretic, “Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes,” PLoS pathogens, vol. 3, no. 12, article e186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. S. J. Greent, L. F. Scheller, M. A. Marletta et al., “Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens,” Immunology Letters, vol. 43, no. 1-2, pp. 87–94, 1994. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Nathan, “Role of iNOS in human host defense,” Science, vol. 312, no. 5782, p. 1874, 2006. View at Google Scholar · View at Scopus
  48. T. Schön, G. Elmberger, Y. Negesse, R. Hernandez Pando, T. Sundqvist, and S. Britton, “Local production of nitric oxide in patients with tuberculosis,” International Journal of Tuberculosis and Lung Disease, vol. 8, no. 9, pp. 1134–1137, 2004. View at Google Scholar · View at Scopus
  49. R. W. Stokes, R. Norris-Jones, D. E. Brooks, T. J. Beveridge, D. Doxsee, and L. M. Thorson, “The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages,” Infection and Immunity, vol. 72, no. 10, pp. 5676–5686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. E. K. Jo, C. S. Yang, C. H. Choi, and C. V. Harding, “Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors,” Cellular Microbiology, vol. 9, no. 5, pp. 1087–1098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. V. Quesniaux, C. Fremond, M. Jacobs et al., “Toll-like receptor pathways in the immune responses to mycobacteria,” Microbes and Infection, vol. 6, no. 10, pp. 946–959, 2004. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Salgame, “Host innate and Th1 responses and the bacterial factors that control Mycobacterium tuberculosis infection,” Current Opinion in Immunology, vol. 17, no. 4, pp. 374–380, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Stenger and R. L. Modlin, “Control of Mycobacterium tuberculosis through mammalian Toll-like receptors,” Current Opinion in Immunology, vol. 14, no. 4, pp. 452–457, 2002. View at Publisher · View at Google Scholar
  54. N. Reiling, S. Ehlers, and C. Hölscher, “MyDths and un-TOLLed truths: sensor, instructive and effector immunity to tuberculosis,” Immunology Letters, vol. 116, no. 1, pp. 15–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Henao-Tamayo, A. P. Junqueira-Kipnis, D. Ordway et al., “A mutant of Mycobacterium tuberculosis lacking the 19-kDa lipoprotein Rv3763 is highly attenuated in vivo but retains potent vaccinogenic properties,” Vaccine, vol. 25, no. 41, pp. 7153–7159, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. V. V. Yeremeev, I. V. Lyadova, B. V. Nikonenko et al., “The 19-kD antigen and protective immunity in a murine model of tuberculosis,” Clinical and Experimental Immunology, vol. 120, no. 2, pp. 274–279, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. I. Sugawara, H. Yamada, C. Li, S. Mizuno, O. Takeuchi, and S. Akira, “Mycobacterial infection in TLR2 and TLR6 knockout mice,” Microbiology and Immunology, vol. 47, no. 5, pp. 327–336, 2003. View at Google Scholar · View at Scopus
  58. K. Takeda, O. Takeuchi, and S. Akira, “Recognition of lipopeptides by Toll-like receptors,” Journal of Endotoxin Research, vol. 8, no. 6, pp. 459–463, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. R. K. Pai, M. E. Pennini, A. A. R. Tobian, D. H. Canaday, W. H. Boom, and C. V. Harding, “Prolonged toll-like receptor signaling by Mycobacterium tuberculosis and its 19-kilodalton lipoprotein inhibits gamma interferon-induced regulation of selected genes in macrophages,” Infection and Immunity, vol. 72, no. 11, pp. 6603–6614, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. S. M. Fortune, A. Solache, A. Jaeger et al., “Mycobacterium tuberculosis inhibits macrophage responses to IFN-γ through myeloid differentiation factor 88-dependent and -independent mechanisms,” Journal of Immunology, vol. 172, no. 10, pp. 6272–6280, 2004. View at Google Scholar · View at Scopus
  61. E. H. Noss, R. K. Pai, T. J. Sellati et al., “Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis,” Journal of Immunology, vol. 167, no. 2, pp. 910–918, 2001. View at Google Scholar · View at Scopus
  62. S. K. Pathak, S. Basu, K. K. Basu et al., “Direct extracellular interaction between the early secreted antigen ESAT-6 of Mycobacterium tuberculosis and TLR2 inhibits TLR signaling in macrophages,” Nature Immunology, vol. 8, no. 6, pp. 610–618, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. B. Samten, X. Wang, and P. F. Barnes, “Mycobacterium tuberculosis ESX-1 system-secreted protein ESAT-6 but not CFP10 inhibits human T-cell immune responses,” Tuberculosis, vol. 89, supplement 1, pp. S74–S76, 2009. View at Publisher · View at Google Scholar
  64. L. Tsenova, E. Ellison, R. Harbacheuski et al., “Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli,” Journal of Infectious Diseases, vol. 192, no. 1, pp. 98–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Sinsimer, G. Huet, C. Manca et al., “The phenolic glycolipid of Mycobacterium tuberculosis differentially modulates the early host cytokine response but does not in itself confer hypervirulence,” Infection and Immunity, vol. 76, no. 7, pp. 3027–3036, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. B. J. Appelmelk, I. van Die, S. J. van Vliet, C. M. J. E. Vandenbroucke-Grauls, T. B. H. Geijtenbeek, and Y. Van Kooyk, “Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells,” Journal of Immunology, vol. 170, no. 4, pp. 1635–1639, 2003. View at Google Scholar · View at Scopus
  67. S. Jang, A. Uzelac, and P. Salgame, “Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection,” Journal of Leukocyte Biology, vol. 84, no. 5, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. J. O. Olobo, M. Geletu, A. Demissie et al., “Circulating TNF-α, TGF-β, and IL-10 in tuberculosis patients and healthy contacts,” Scandinavian Journal of Immunology, vol. 53, no. 1, pp. 85–91, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. S. Redpath, P. Ghazal, and N. R. J. Gascoigne, “Hijacking and exploitation of IL-10 by intracellular pathogens,” Trends in Microbiology, vol. 9, no. 2, pp. 86–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. R. de Jong, F. Altare, I. A. Haagen et al., “Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients,” Science, vol. 280, no. 5368, pp. 1435–1438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  71. H. W. Tso, L. L. Yu, C. M. Tam, H. S. Wong, and A. K. S. Chiang, “Associations between IL12B polymorphisms and tuberculosis in the Hong Kong Chinese population,” Journal of Infectious Diseases, vol. 190, no. 5, pp. 913–919, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. A. M. Cooper, D. K. Dalton, T. A. Stewart, J. P. Griffin, D. G. Russell, and I. M. Orme, “Disseminated tuberculosis in interferon γ gene-disrupted mice,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2243–2247, 1993. View at Publisher · View at Google Scholar · View at Scopus
  73. J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2249–2254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  74. T. H. M. Ottenhoff, F. A. W. Verreck, M. A. Hoeve, and E. van de Vosse, “Control of human host immunity to mycobacteria,” Tuberculosis, vol. 85, no. 1-2, pp. 53–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  75. B. M. Saunders, A. A. Frank, I. M. Orme, and A. M. Cooper, “CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis,” Cellular Immunology, vol. 216, no. 1-2, pp. 65–72, 2002. View at Publisher · View at Google Scholar · View at Scopus
  76. C. A. Scanga, V. P. Mohan, K. Yu et al., “Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon γ and nitric oxide synthase 2,” Journal of Experimental Medicine, vol. 192, no. 3, pp. 347–358, 2000. View at Publisher · View at Google Scholar
  77. V. Lazarevic, D. Nolt, and J. L. Flynn, “Long-term control of Mycobacterium tuberculosis infection is mediated by dynamic immune responses,” Journal of Immunology, vol. 175, no. 2, pp. 1107–1117, 2005. View at Google Scholar · View at Scopus
  78. D. Sud, C. Bigbee, J. L. Flynn, and D. E. Kirschner, “Contribution of CD8+ T cells to control of Mycobacterium tuberculosis infection,” Journal of Immunology, vol. 176, no. 7, pp. 4296–4314, 2006. View at Google Scholar · View at Scopus
  79. J. S. M. Woodworth and S. M. Behar, “Mycobacterium tuberculosis-specific CD8+ T cells and their role in immunity,” Critical Reviews in Immunology, vol. 26, no. 4, pp. 317–352, 2006. View at Google Scholar · View at Scopus
  80. A. Sodhi, J. H. Gong, C. Silva, D. Qian, and P. F. Barnes, “Clinical correlates of interferon γ production in patients with tuberculosis,” Clinical Infectious Diseases, vol. 25, no. 3, pp. 617–620, 1997. View at Google Scholar
  81. K. V. Jalapathy, C. Prabha, and S. D. Das, “Correlates of protective immune response in tuberculous pleuritis,” FEMS Immunology and Medical Microbiology, vol. 40, no. 2, pp. 139–145, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. C. Jiménez-Martínez, M. Linares, R. Báez et al., “Intracellular expression of interleukin-4 and interferon-γ by a Mycobacterium tuberculosis antigen-stimulated CD4+ CD57+ T-cell subpopulation with memory phenotype in tuberculosis patients,” Immunology, vol. 111, no. 1, pp. 100–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Roberts, N. Beyers, A. Aguirre, and G. Walzl, “Immunosuppression during active tuberculosis is characterized by decreased interferon-γ production and CD25 expression with elevated forkhead box P3, transforming growth factor-β, and interleukin-4 mRNA levels,” Journal of Infectious Diseases, vol. 195, no. 6, pp. 870–878, 2007. View at Publisher · View at Google Scholar
  84. J. F. D. Siawaya, N. B. Bapela, K. Ronacher, N. Beyers, P. Van Helden, and G. Walzl, “Differential expression of interleukin-4 (IL-4) and IL-4δ2 mRNA, but not transforming growth factor beta (TGF-β), TGF-βRII, Foxp3, gamma interferon, T-bet, or GATA-3 mRNA, in patients with fast and slow responses to antituberculosis treatment,” Clinical and Vaccine Immunology, vol. 15, no. 8, pp. 1165–1170, 2008. View at Publisher · View at Google Scholar
  85. D. M. da Fonseca, C. L. Silva, P. F. Wowk et al., “Mycobacterium tuberculosis culture filtrate proteins plus CpG oligodeoxynucleotides confer protection to Mycobacterium bovis BCG-primed mice by inhibiting interleukin-4 secretion,” Infection and Immunity, vol. 77, no. 12, pp. 5311–5321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. S. G. Rhodes, J. Sawyer, A. O. Whelan et al., “Is interleukin-4δ3 splice variant expression in bovine tuberculosis a marker of protective immunity?” Infection and Immunity, vol. 75, no. 6, pp. 3006–3013, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. E. Sahiratmadja, B. Alisjahbana, T. De Boer et al., “Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment,” Infection and Immunity, vol. 75, no. 2, pp. 820–829, 2007. View at Publisher · View at Google Scholar
  88. K. R. Morris, R. D. Lutz, X. Bai et al., “Suppression of IFNγ + mycobacterial lipoarabinomannan-induced NO by IL-4 is due to decreased IRF-1 expression,” Tuberculosis, vol. 89, no. 4, pp. 294–303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  89. Anon, “Tuberculosis associated with blocking agents against tumor necrosis factor-alpha—California, 2002-2003,” Morbidity and Mortality Weekly Report, vol. 53, no. 30, pp. 683–686, 2004. View at Google Scholar
  90. J. J. Gómez-Reino, L. Carmona, V. Rodríguez Valverde, E. M. Mola, and M. D. Montero, “Treatment of rheumatoid arthritis with tumor necrosis factor inhibitors may predispose to significant increase in tuberculosis risk: a multicenter active-surveillance report,” Arthritis and Rheumatism, vol. 48, no. 8, pp. 2122–2127, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Bezuidenhout, T. Roberts, L. Muller, P. van Helden, and G. Walzl, “Pleural tuberculosis in patients with early HIV infection is associated with increased TNF-alpha expression and necrosis in granulomas,” PLoS ONE, vol. 4, no. 1, Article ID e4228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Sharma and M. Bose, “Role of cytokines in immune response to pulmonary tuberculosis,” Asian Pacific Journal of Allergy and Immunology, vol. 19, no. 3, pp. 213–219, 2001. View at Google Scholar · View at Scopus
  93. J. L. Barks, J. J. McQuillan, and M. F. Iademarco, “TNF-α and IL-4 synergistically increase vascular cell adhesion molecule-1 expression in cultured vascular smooth muscle cells,” Journal of Immunology, vol. 159, no. 9, pp. 4532–4538, 1997. View at Google Scholar · View at Scopus
  94. M. F. Iademarco, J. L. Barks, and D. C. Dean, “Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-α in cultured endothelial cells,” Journal of Clinical Investigation, vol. 95, no. 1, pp. 264–271, 1995. View at Google Scholar · View at Scopus
  95. N. R. Patel, J. Zhu, S. D. Tachado et al., “HIV impairs TNF-α mediated macrophage apoptotic response to Mycobacterium tuberculosis,” Journal of Immunology, vol. 179, no. 10, pp. 6973–6980, 2007. View at Google Scholar · View at Scopus
  96. M. Divangahi, D. Desjardins, C. Nunes-Alves, H. G. Remold, and S. M. Behar, “Eicosanoid pathways regulate adaptive immunity to Mycobacterium tuberculosis,” Nature Immunology, vol. 11, pp. 751–758, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Marino, A. Myers, J. L. Flynn, and D. E. Kirschner, “TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next-generation two-compartmental model,” Journal of Theoretical Biology, vol. 265, no. 4, pp. 586–598, 2010. View at Publisher · View at Google Scholar
  98. S. Stenger, “Immunological control of tuberculosis: role of tumour necrosis factor and more,” Annals of the Rheumatic Diseases, vol. 64, supplement 4, pp. iv24–iv28, 2005. View at Publisher · View at Google Scholar
  99. L. Kremer, J. Estaquier, I. Wolowczuk, F. Biet, J. C. Ameisen, and C. Locht, “Ineffective cellular immune response associated with T-cell apoptosis in susceptible Mycobacterium bovis BCG-infected mice,” Infection and Immunity, vol. 68, no. 7, pp. 4264–4273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  100. C. Loeuillet, F. Martinon, C. Perez, M. Munoz, M. Thome, and P. R. Meylan, “Mycobacterium tuberculosis subverts innate immunity to evade specific effectors,” Journal of Immunology, vol. 177, no. 9, pp. 6245–6255, 2006. View at Google Scholar · View at Scopus
  101. Y. Ozeki, K. Kaneda, N. Fujiwara, M. Morimoto, S. Oka, and I. Yano, “In vivo induction of apoptosis in the thymus by administration of mycobacterial cord factor (trehalose 6,6-dimycolate),” Infection and Immunity, vol. 65, no. 5, pp. 1793–1799, 1997. View at Google Scholar · View at Scopus
  102. R. Placido, G. Mancino, A. Amendola et al., “Apoptosis of human monocytes/macrophages in Mycobacterium tuberculosis infection,” Journal of Pathology, vol. 181, no. 1, pp. 31–38, 1997. View at Google Scholar · View at Scopus
  103. V. A. Ríos-Barrera, V. Campos-Peña, D. Aguilar-León et al., “Macrophage and T lymphocyte apoptosis during experimental pulmonary tuberculosis: their relationship to mycobacterial virulence,” European Journal of Immunology, vol. 36, no. 2, pp. 345–353, 2006. View at Publisher · View at Google Scholar
  104. P. M. Roger and L. E. Bermudez, “Infection of mice with Mycobacterium avium primes CD8+ lymphocytes for apoptosis upon exposure to macrophages,” Clinical Immunology, vol. 99, no. 3, pp. 378–386, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. V. E. Watson, L. L. Hill, L. B. Owen-Schaub et al., “Apoptosis in Mycobacterium tuberculosis infection in mice exhibiting varied immunopathology,” Journal of Pathology, vol. 190, no. 2, pp. 211–220, 2000. View at Google Scholar · View at Scopus
  106. F. Budak, E. K. Uzaslan, S. Cangur, G. Goral, and H. B. Oral, “Increased pleural soluble Fas ligand (sFasL) levels in tuberculosis pleurisy and its relation with T-helper type 1 cytokines,” Lung, vol. 186, no. 5, pp. 337–343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. H. Gan, J. Lee, F. Ren, M. Chen, H. Kornfeld, and H. G. Remold, “Mycobacterium tuberculosis blocks crosslinking of annexin-1 and apoptotic envelope formation on infected macrophages to maintain virulence,” Nature Immunology, vol. 9, no. 10, pp. 1189–1197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  108. T. Mustafa, S. J. Mogga, S. G. M. Mfinanga, O. Mørkve, and L. Sviland, “Significance of Fas and Fas ligand in tuberculous lymphadenitis,” Immunology, vol. 114, no. 2, pp. 255–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  109. S. A. Porcelli and W. R. Jacobs, “Tuberculosis: unsealing the apoptotic envelope,” Nature Immunology, vol. 9, no. 10, pp. 1101–1102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. I. Kramnik, “Genetic dissection of host resistance to Mycobacterium tuberculosis: the sst1 locus and the Ipr1 gene,” Current Topics in Microbiology and Immunology, vol. 321, pp. 123–148, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. J. S. Park, M. H. Tamayo, M. Gonzalez-Juarrero, I. M. Orme, and D. J. Ordway, “Virulent clinical isolates of Mycobacterium tuberculosis grow rapidly and induce cellular necrosis but minimal apoptosis in murine macrophages,” Journal of Leukocyte Biology, vol. 79, no. 1, pp. 80–86, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. A. K. Randhawa, H. J. Ziltener, and R. W. Stokes, “CD43 controls the intracellular growth of Mycobacterium tuberculosis through the induction of TNF-α-mediated apoptosis,” Cellular Microbiology, vol. 10, no. 10, pp. 2105–2117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. K. Velmurugan, B. Chen, J. L. Miller et al., “Mycobacterium tuberculosis nuoG is a virulence gene that inhibits apoptosis of infected host cells.,” PLoS Pathogens, vol. 3, no. 7, article e110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. X. Y. He, L. Xiao, H. B. Chen et al., “T regulatory cells and Th1/Th2 cytokines in peripheral blood from tuberculosis patients,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 29, no. 6, pp. 643–650, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. K. Dheda, H. Booth, J. F. Huggett, M. A. Johnson, A. Zumla, and G. A. W. Rook, “Lung remodeling in pulmonary tuberculosis,” Journal of Infectious Diseases, vol. 192, no. 7, pp. 1201–1210, 2005. View at Publisher · View at Google Scholar · View at Scopus
  116. R. Hernandez-Pando and G. A. W. Rook, “The role of TNF-α in T-cell mediated inflammation depends on the Th1/Th2 cytokine balance,” Immunology, vol. 82, no. 4, pp. 591–595, 1994. View at Google Scholar · View at Scopus
  117. L. D. Aguilar, M. Hanekom, D. Mata et al., “Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission,” Tuberculosis, vol. 90, no. 5, pp. 319–325, 2010. View at Publisher · View at Google Scholar
  118. S. Kausalya, R. Somogyi, A. Orlofsky, and M. B. Prystowsky, “Requirement of A1-α for bacillus Calmette-Guérin-mediated protection of macrophages against nitric oxide-induced apoptosis,” Journal of Immunology, vol. 166, no. 7, pp. 4721–4727, 2001. View at Google Scholar · View at Scopus
  119. M. Krzyzowska, A. Schollenberger, A. Pawłowski et al., “Lipoarabinomannan as a regulator of the monocyte apoptotic response to Mycobacterium bovis BCG danish strain 1331 infection,” Polish Journal of Microbiology, vol. 56, no. 2, pp. 89–96, 2007. View at Google Scholar · View at Scopus
  120. S. J. Mogga, T. Mustafa, L. Sviland, and R. Nilsen, “Increased Bcl-2 and reduced Bax expression in infected macrophages in slowly progressive primary murine Mycobacterium tuberculosis infection,” Scandinavian Journal of Immunology, vol. 56, no. 4, pp. 383–391, 2002. View at Publisher · View at Google Scholar · View at Scopus
  121. L. M. Sly, S. M. Hingley-Wilson, N. E. Reiner, and W. R. McMaster, “Survival of Mycobacterium tuberculosis in host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic Bcl-2 family member Mcl-1,” Journal of Immunology, vol. 170, no. 1, pp. 430–437, 2003. View at Google Scholar · View at Scopus
  122. J. Zhang, R. Jiang, H. Takayama, and Y. Tanaka, “Survival of virulent Mycobacterium tuberculosis involves preventing apoptosis induced by Bcl-2 upregulation and release resulting from necrosis in J774 macrophages,” Microbiology and Immunology, vol. 49, no. 9, pp. 845–852, 2005. View at Google Scholar · View at Scopus
  123. C. J. Riendeau and H. Kornfeld, “THP-1 cell apoptosis in response to Mycobacterial infection,” Infection and Immunity, vol. 71, no. 1, pp. 254–259, 2003. View at Publisher · View at Google Scholar · View at Scopus
  124. J. Lee, H. G. Remold, M. H. Ieong, and H. Kornfeld, “Macrophage apoptosis in response to high intracellular burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway,” Journal of Immunology, vol. 176, no. 7, pp. 4267–4274, 2006. View at Google Scholar · View at Scopus
  125. K. Klingler, K. M. Tchou-Wong, O. Brändli et al., “Effects of mycobacteria on regulation of apoptosis in mononuclear phagocytes,” Infection and Immunity, vol. 65, no. 12, pp. 5272–5278, 1997. View at Google Scholar · View at Scopus
  126. M. J. Kim, H. C. Wainwright, M. Locketz et al., “Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism,” EMBO Molecular Medicine, vol. 2, no. 7, pp. 258–274, 2010. View at Publisher · View at Google Scholar
  127. A. Dasgupta, K. Sureka, D. Mitra et al., “An oligopeptide transporter of Mycobacterium tuberculosis regulates cytokine release and apoptosis of infected macrophages,” PLoS ONE, vol. 5, no. 8, Article ID e12225, 2010. View at Publisher · View at Google Scholar
  128. L. Danelishvili, Y. Yamazaki, J. Selker, and L. E. Bermudez, “Secreted Mycobacterium tuberculosis Rv3654c and Rv3655c proteins participate in the suppression of macrophage apoptosis,” PLoS ONE, vol. 5, no. 5, Article ID e10474, 2010. View at Publisher · View at Google Scholar
  129. M. K. Balcewicz-Sablinska, J. Keane, H. Kornfeld, and H. G. Remold, “Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation of TNF-α,” Journal of Immunology, vol. 161, no. 5, pp. 2636–2641, 1998. View at Google Scholar · View at Scopus
  130. J. Lee, M. Hartman, and H. Kornfeld, “Macrophage apoptosis in tuberculosis,” Yonsei Medical Journal, vol. 50, no. 1, pp. 1–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  131. J. Hinchey, S. Lee, B. Y. Jeon et al., “Enhanced priming of adaptive immunity by a proapoptotic mutant of Mycobacterium tuberculosis,” Journal of Clinical Investigation, vol. 117, no. 8, pp. 2279–2288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  132. J. L. Miller, K. Velmurugan, M. J. Cowan, and V. Briken, “The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis,” PLoS pathogens, vol. 6, no. 4, Article ID e1000864, 2010. View at Publisher · View at Google Scholar · View at Scopus
  133. G. Stadthagen, M. Jackson, P. Charles et al., “Comparative investigation of the pathogenicity of three Mycobacterium tuberculosis mutants defective in the synthesis of p-hydroxybenzoic acid derivatives,” Microbes and Infection, vol. 8, no. 8, pp. 2245–2253, 2006. View at Publisher · View at Google Scholar
  134. G. A. W. Rook, R. Hernandez-Pando, K. Dheda, and G. Teng Seah, “IL-4 in tuberculosis: implications for vaccine design,” Trends in Immunology, vol. 25, no. 9, pp. 483–488, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. R. Hernandez-Pando, D. Aguilar, M. L. G. Hernandez, H. Orozco, and G. A. W. Rook, “Pulmonary tuberculosis in BALB/c mice with non-functional IL-4 genes: changes in the inflammatory effects of TNF-α and in the regulation of fibrosis,” European Journal of Immunology, vol. 34, no. 1, pp. 174–183, 2004. View at Publisher · View at Google Scholar · View at Scopus
  136. P. L. Lin, A. Myers, L. Smith et al., “Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model,” Arthritis and Rheumatism, vol. 62, no. 2, pp. 340–350, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. V. W. Ho and L. M. Sly, “Derivation and characterization of murine alternatively activated (M2) macrophages,” Methods in Molecular Biology, vol. 531, pp. 173–185, 2009. View at Publisher · View at Google Scholar · View at Scopus
  138. F. O. Martinez, A. Sica, A. Mantovani, and M. Locati, “Macrophage activation and polarization,” Frontiers in Bioscience, vol. 13, no. 2, pp. 453–461, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. E. F. Redente, D. M. Higgins, L. D. Dwyer-Nield, I. M. Orme, M. Gonzalez-Juarrero, and A. M. Malkinson, “Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation,” Journal of Leukocyte Biology, vol. 88, no. 1, pp. 159–168, 2010. View at Publisher · View at Google Scholar
  140. G. Corna, L. Campana, E. Pignatti et al., “Polarization dictates iron handling by inflammatory and alternatively activated macrophages,” Haematologica, vol. 95, no. 11, pp. 1814–1822, 2010. View at Publisher · View at Google Scholar
  141. J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, “Biochemical and functional characterization of three activated macrophage populations,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1298–1307, 2006. View at Publisher · View at Google Scholar · View at Scopus