Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2011, Article ID 730828, 6 pages
http://dx.doi.org/10.1155/2011/730828
Research Article

Dexamethasone Prophylaxis in Pediatric Open Heart Surgery Is Associated with Increased Blood Long Pentraxin PTX3: Potential Clinical Implications

1Division of Cardiovascular Surgery, G. Gaslini Institute, IRCCS, Largo G. Gaslini 5, 16148 Genoa, Italy
2Department of Immunology and Inflammation, Istituto Clinico Humanitas, IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
3Laboratory of Oncology, G. Gaslini Institute, IRCCS, Largo G. Gaslini 5, 16148 Genoa, Italy
4Clinical Epidemiology and Biostatistics Unit, G. Gaslini Institute, IRCCS, Largo G. Gaslini 5, 16148 Genoa, Italy
5Dipartimento di Medicina Traslazionale, University of Milan, Via Manzoni 56, 20089 Rozzano, Milan, Italy

Received 12 November 2010; Accepted 2 May 2011

Academic Editor: Luigina Romani

Copyright © 2011 Franco Lerzo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Asimakopoulos, “Systemic inflammation and cardiac surgery: an update,” Perfusion, vol. 16, no. 5, pp. 353–360, 2001. View at Google Scholar · View at Scopus
  2. H. M. Oudemans-Van Straaten, P. G. M. Jansen, F. J. Hoek et al., “Intestinal permeability, circulating endotoxin, and postoperative systemic responses in cardiac surgery patients,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 10, no. 2, pp. 187–194, 1996. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Bourbon, M. Vionnet, P. Leprince et al., “The effect of methylprednisolone treatment on the cardiopulmonary bypass-induced systemic inflammatory response,” European Journal of Cardio-thoracic Surgery, vol. 26, no. 5, pp. 932–938, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. R. A. Bronicki, C. L. Backer, H. P. Baden, C. Mavroudis, S. E. Crawford, and T. P. Green, “Dexamethasone reduces the inflammatory response to cardiopulmonary bypass in children,” Annals of Thoracic Surgery, vol. 69, no. 5, pp. 1490–1495, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. J. B. Celik, N. Gormus, S. Okesli, Z. I. Gormus, and H. Solak, “Methylprednisolone prevents inflammatory reaction occurring during cardiopulmonary bypass: effects on TNF-α, IL-6, IL-8, IL-10,” Perfusion, vol. 19, no. 3, pp. 185–191, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Gessler, V. Hohl, T. Carrel et al., “Administration of steroids in pediatric cardiac surgery: impact on clinical outcome and systemic inflammatory response,” Pediatric Cardiology, vol. 26, no. 5, pp. 595–600, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Lindberg, C. Forsell, P. Jögi, and A. K. Olsson, “Effects of dexamethasone on clinical course, C-reactive protein, S100B protein and von Willebrand factor antigen after paediatric cardiac surgery,” British Journal of Anaesthesia, vol. 90, no. 6, pp. 728–732, 2003. View at Google Scholar
  8. V. A. Schroeder, J. M. Pearl, S. M. Schwartz, T. P. Shanley, P. B. Manning, and D. P. Nelson, “Combined steroid treatment for congenital heart surgery improves oxygen delivery and reduces postbypass inflammatory mediator expression,” Circulation, vol. 107, no. 22, pp. 2823–2828, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. R. P. Whitlock, S. Chan, P. J. Devereaux et al., “Clinical benefit of steroid use in patients undergoing cardiopulmonary bypass: a meta-analysis of randomized trials,” European Heart Journal, vol. 29, no. 21, pp. 2592–2600, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Garlanda, B. Bottazzi, A. Bastone, and A. Mantovani, “Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility,” Annual Review of Immunology, vol. 23, pp. 337–366, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. B. Pepys and G. M. Hirschfield, “C-reactive protein: a critical update,” Journal of Clinical Investigation, vol. 111, no. 12, pp. 1805–1812, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Bottazzi, C. Garlanda, A. Cotena et al., “The long pentraxin PTX3 as a prototypic humoral pattern recognition receptor: interplay with cellular innate immunity,” Immunological Reviews, vol. 227, no. 1, pp. 9–18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Klouche, G. Peri, C. Knabbe et al., “Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells,” Atherosclerosis, vol. 175, no. 2, pp. 221–228, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. S. Rolph, S. Zimmer, B. Bottazzi, C. Garlanda, A. Mantovani, and G. K. Hansson, “Production of the long pentraxin PTX3 in advanced atherosclerotic plaques,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 22, no. 5, pp. e10–e14, 2002. View at Google Scholar · View at Scopus
  15. R. Latini, A. P. Maggioni, G. Peri et al., “Prognostic significance of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 110, no. 16, pp. 2349–2354, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Inoue, A. Sugiyama, P. C. Reid et al., “Establishment of a high sensitivity plasma assay for human pentraxin3 as a marker for unstable angina pectoris,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 27, no. 1, pp. 161–167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. Kotooka, T. Inoue, D. Fujimatsu et al., “Pentraxin3 is a novel marker for stent-induced inflammation and neointimal thickening,” Atherosclerosis, vol. 197, no. 1, pp. 368–374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Suzuki, Y. Takeishi, T. Niizeki et al., “Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure,” American Heart Journal, vol. 155, no. 1, pp. 75–81, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. G. D. Norata, C. Garlanda, and A. L. Catapano, “The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases,” Trends in Cardiovascular Medicine, vol. 20, no. 2, pp. 35–40, 2010. View at Google Scholar
  20. M. Salio, S. Chimenti, N. D. Angelis et al., “Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction,” Circulation, vol. 117, no. 8, pp. 1055–1064, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Müller, G. Peri, A. Doni et al., “High circulating levels of the IL-1 type II decoy receptor in critically ill patients with sepsis: association of high decoy receptor levels with glucocorticoid administration,” Journal of Leukocyte Biology, vol. 72, no. 4, pp. 643–649, 2002. View at Google Scholar · View at Scopus
  22. F. Re, M. Muzio, M. De Rossi et al., “The type II “receptor” as a decoy target for interleukin 1 in polymorphonuclear leukocytes: characterization of induction by dexamethasone and ligand binding properties of the released decoy receptor,” Journal of Experimental Medicine, vol. 179, no. 2, pp. 739–743, 1994. View at Google Scholar · View at Scopus
  23. S. Orlando, N. Polentarutti, and A. Mantovani, “Selectivity release of the type II decoy IL-1 receptor,” Cytokine, vol. 12, no. 7, pp. 1001–1006, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Peri, M. Introna, D. Corradi et al., “PTX3, a prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans,” Circulation, vol. 102, no. 6, pp. 636–641, 2000. View at Google Scholar · View at Scopus
  25. J. F. Wagenaar, M. G. A. Goris, M. H. Gasem et al., “Long pentraxin PTX3 is associated with mortality and disease severity in severe Leptospirosis,” Journal of Infection, vol. 58, no. 6, pp. 425–432, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Doni, G. Mantovani, C. Porta et al., “Cell-specific regulation of PTX3 by glucocorticoid hormones in hematopoietic and nonhematopoietic cells,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29983–29992, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Sternberg, “Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens,” Nature Reviews Immunology, vol. 6, no. 4, pp. 318–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. I. Webster and E. M. Sternberg, “Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products,” Journal of Endocrinology, vol. 181, no. 2, pp. 207–221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Doni, M. Michela, B. Bottazzi et al., “Regulation of PTX3, a key component of humoral innate immunity in human dendritic cells: stimulation by IL-10 and inhibition by IFN-γ,” Journal of Leukocyte Biology, vol. 79, no. 4, pp. 797–802, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Deban, R. C. Russo, M. Sironi et al., “Regulation of leukocyte recruitment by the long pentraxin PTX3,” Nature Immunology, vol. 11, no. 4, pp. 328–334, 2010. View at Publisher · View at Google Scholar · View at Scopus