Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 537310, 16 pages
http://dx.doi.org/10.1155/2012/537310
Review Article

The Suckling Rat as a Model for Immunonutrition Studies in Early Life

1Department of Physiology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII, 08028 Barcelona, Spain
2Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08028 Barcelona, Spain

Received 3 May 2012; Revised 18 June 2012; Accepted 19 June 2012

Academic Editor: Parveen Yaqoob

Copyright © 2012 Francisco J. Pérez-Cano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. M. Rasmussen, “The “fetal origins” hypothesis: challenges and opportunities for maternal and child nutrition,” Annual Review of Nutrition, vol. 21, pp. 73–95, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Waterland and R. L. Jirtle, “Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases,” Nutrition, vol. 20, no. 1, pp. 63–68, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Kaplan, H. N. Shi, and W. A. Walker, “The role of microbes in developmental immunologic programming,” Pediatric Research, vol. 69, no. 6, pp. 465–472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. H. Renz, P. Brandtzaeg, and M. Hornef, “The impact of perinatal immune development on mucosal homeostasis and chronic inflammation,” Nature Reviews Immunology, vol. 12, no. 1, pp. 9–23, 2011. View at Publisher · View at Google Scholar
  5. M. B. Azad and A. L. Kozyrskyj, “Perinatal programming of asthma: the role of gut microbiota,” Clinical and Developmental Immunology, vol. 2012, Article ID 932072, 9 pages, 2012. View at Publisher · View at Google Scholar
  6. P. Puiman and B. Stoll, “Animal models to study neonatal nutrition in humans,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 5, pp. 601–606, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. D. H. Baker, “Animal models in nutrition research,” Journal of Nutrition, vol. 138, no. 2, pp. 391–396, 2008. View at Google Scholar · View at Scopus
  8. P. C. Calder and S. Kew, “The immune system: a target for functional foods?” British Journal of Nutrition, vol. 88, supplement 2, pp. S165–S176, 2002. View at Google Scholar · View at Scopus
  9. C. H. Stahl, X. Lei, and B. Larson, “Introduction to the symposium: appropriate animal models for nutritional research in health and disease,” Journal of Nutrition, vol. 138, no. 2, pp. 389–390, 2008. View at Google Scholar · View at Scopus
  10. N. Salvador, “Biología general del reactivo biológico,” in Ciencia y Tecnología en Protección y Experimentación Animal, J. M. Zúñiga, J. A. Tur, S. Milocco, and R. Piñeiro, Eds., pp. 23–82, Mc Graw-Hill Interamericana, Madrid, Spain, 2001. View at Google Scholar
  11. N. Salvador, J. Guillén, and J. M. Peralta, “Variables condicionantes. Parámetros fisiológicos, hemáticos, bioquímicos y otros,” in Ciencia y Tecnologia del Animal de Laboratorio, J. M. Zúñiga, J. M. Orellana, and J. A. Tur, Eds., vol. 1, pp. 151–183, Europa Artes Gráficas, Salamanca, Spain, 2008. View at Google Scholar
  12. C. M. Lee, A. C. Boileau, T. W. M. Boileau et al., “Review of animal models in carotenoid research,” Journal of Nutrition, vol. 129, no. 12, pp. 2271–2277, 1999. View at Google Scholar · View at Scopus
  13. “Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes,” Official Journal of the European Union L276/33-79 (20.10.2010).
  14. P. Guilloteau, R. Zabielski, H. M. Hammon, and C. C. Metges, “Nutritional programming of gastrointestinal tract development. Is the pig a good model for man?” Nutrition Research Reviews, vol. 23, no. 1, pp. 4–22, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Franch, M. D. López-Tejero, F. J. Pérez-Cano et al., “Suplementos dietéticos en el período perinatal: nutrición oral experimental,” Nutrición Clínica y Dietética Hospitalaria, vol. 23, p. 72, 2003. View at Google Scholar
  16. J. K. Patterson, X. G. Lei, and D. D. Miller, “The pig as an experimental model for elucidating the mechanisms governing dietary influence on mineral absorption,” Experimental Biology and Medicine, vol. 233, no. 6, pp. 651–664, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. L. Greger, “Using animals to assess bioavailability of minerals: implications for human nutrition,” Journal of Nutrition, vol. 122, no. 10, pp. 2047–2052, 1992. View at Google Scholar · View at Scopus
  18. G. Chirico, “Development of the immune system in neonates,” Journal of the Arab Neonatology Forum, vol. 2, pp. 5–11, 2005. View at Google Scholar
  19. K. Hoorweg and T. Cupedo, “Development of human lymph nodes and Peyer's patches,” Seminars in Immunology, vol. 20, no. 3, pp. 164–170, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Vicente, A. Varas, R. S. Acedón, E. Jiménez, J. J. Muñoz, and A. G. Zapata, “Appearance and maturation of T-Cell subsets during rat thymus ontogeny,” Developmental Immunology, vol. 5, no. 4, pp. 319–331, 1998. View at Google Scholar · View at Scopus
  21. F. Jotereau, F. Heuze, V. Salomon-Vie, and H. Gascan, “Cell kinetics in the fetal mouse thymus: precursor cell input, proliferation, and emigration,” Journal of Immunology, vol. 138, no. 4, pp. 1026–1030, 1987. View at Google Scholar · View at Scopus
  22. J. Spencer and T. T. MacDonald, “Ontogeny of human mucosal immunity,” in Ontogeny of the Immune System of the Gut, T. T. MacDonald, Ed., CRC Press, 1990. View at Google Scholar
  23. D. Campana, G. Janossy, E. Coustan-Smith et al., “The expression of T cell receptor-associated proteins during T cell ontogeny in man,” Journal of Immunology, vol. 142, no. 1, pp. 57–66, 1989. View at Google Scholar · View at Scopus
  24. F. J. Pérez-Cano, C. Castellote, S. Marín-Gallén, A. González-Castro, À. Franch, and M. Castell, “Phenotypic and functional characteristics of rat spleen lymphocytes during suckling,” Developmental and Comparative Immunology, vol. 31, no. 12, pp. 1264–1277, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Adkins, C. Leclerc, and S. Marshall-Clarke, “Neonatal adaptive immunity comes of age,” Nature Reviews Immunology, vol. 4, no. 7, pp. 553–564, 2004. View at Google Scholar · View at Scopus
  26. H. Kubagawa, W. E. Gathings, and D. Levitt, “Immunoglobulin isotype expression of normal Pre-B cells as determined by immunofluorescence,” Journal of Clinical Immunology, vol. 2, no. 4, pp. 264–269, 1982. View at Google Scholar · View at Scopus
  27. X. Wu, Y. Chen, H. Wei, R. Sun, and Z. Tian, “Development of murine hepatic NK cells during ontogeny: comparison with spleen NK cells,” Clinical and Developmental Immunology, vol. 2012, Article ID 759765, 12 pages, 2012. View at Publisher · View at Google Scholar
  28. A. Yabuhara, H. Kawai, and A. Komiyama, “Development of natural killer cytotoxicity during childhood: marked increases in number of natural killer cells with adequate cytotoxic abilities during infancy to early childhood,” Pediatric Research, vol. 28, no. 4, pp. 316–322, 1990. View at Google Scholar · View at Scopus
  29. G. Chirico, R. Maccario, D. Montagna, A. Chiara, A. Gasparoni, and G. Rondini, “Natural killer cell activity in preterm infants: effect of intravenous immune globulin administration,” Journal of Pediatrics, vol. 117, no. 3, pp. 465–466, 1990. View at Google Scholar · View at Scopus
  30. F. J. Pérez-Cano, C. Castellote, A. M. González-Castro, C. Pelegrí, M. Castell, and A. Franch, “Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats,” Pediatric Research, vol. 58, no. 5, pp. 885–891, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. F. J. Pérez-Cano, C. Castellote, S. Marín-Gallén, A. Franch, and M. Castell, “Neonatal immunoglobulin secretion and lymphocyte phenotype in rat small intestine lamina propria,” Pediatric Research, vol. 58, no. 1, pp. 164–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Adkins, “T-cell function in newborn mice and humans,” Immunology Today, vol. 20, no. 7, pp. 330–335, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Gasparoni, L. Ciardelli, A. Avanzini et al., “Age-related changes in intracellular Th1/Th2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults,” Biology of the Neonate, vol. 84, no. 4, pp. 297–303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Marshall-Clarke, D. Reen, L. Tasker, and J. Hassan, “Neonatal immunity: how well has it grown up?” Immunology Today, vol. 21, no. 1, pp. 35–41, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. C. A. Siegrist and R. Aspinall, “B-cell responses to vaccination at the extremes of age,” Nature Reviews Immunology, vol. 9, no. 3, pp. 185–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Rose, M. Lichtenheld, M. R. Foote, and B. Adkins, “Murine neonatal CD4+ cells are poised for rapid Th2 effector-like function,” Journal of Immunology, vol. 178, no. 5, pp. 2667–2678, 2007. View at Google Scholar · View at Scopus
  37. B. Adkins, Y. Bu, and P. Guevara, “The generation of Th memory in neonates versus adults: prolonged primary Th2 effector function and impaired development of Th1 memory effector function in murine neonates,” Journal of Immunology, vol. 166, no. 2, pp. 918–925, 2001. View at Google Scholar · View at Scopus
  38. L. M. Bowman and P. G. Holt, “Selective enhancement of systemic Th1 immunity in immunologically immature rats with an orally administered bacterial extract,” Infection and Immunity, vol. 69, no. 6, pp. 3719–3727, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. T. G. Wegmann, H. Lin, L. Guilbert, and T. R. Mosmann, “Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon?” Immunology Today, vol. 14, no. 7, pp. 353–356, 1993. View at Google Scholar · View at Scopus
  40. L. Maródi, “Innate cellular immune responses in newborns,” Clinical Immunology, vol. 118, no. 2-3, pp. 137–144, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Brandtzaeg, H. Kiyono, R. Pabst, and M. W. Russell, “Terminology: nomenclature of mucosa-associated lymphoid tissue,” Mucosal Immunology, vol. 1, no. 1, pp. 31–37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Bienenstock and M. R. McDermott, “Bronchus- and nasal-associated lymphoid tissues,” Immunological Reviews, vol. 206, pp. 22–31, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Mayrhofer, C. W. Pugh, and A. N. Barclay, “The distribution, ontogeny and origin in the rat of Ia-positive cells with dendritic morphology and of Ia antigen in epithelia, with special reference to the intestine,” European Journal of Immunology, vol. 13, no. 2, pp. 112–122, 1983. View at Google Scholar · View at Scopus
  44. T. T. MacDonald, M. Bajaj-Elliott, and S. L. F. Pender, “T cells orchestrate intestinal mucosal shape and integrity,” Immunology Today, vol. 20, no. 11, pp. 505–510, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Flo, F. Elias, E. Massouh, and M. E. Roux, “Impairment of B and T cell maturation in gut associated lymphoid tissues due to malnutrition during lactation,” Developmental and Comparative Immunology, vol. 18, no. 6, pp. 543–555, 1994. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Spencer, T. T. MacDonald, T. Finn, and P. G. Isaacson, “The development of gut associated lymphoid tissue in the terminal ileum of fetal human intestine,” Clinical and Experimental Immunology, vol. 64, no. 3, pp. 536–543, 1986. View at Google Scholar · View at Scopus
  47. A. M. Silverstein and R. J. Lukes, “Fetal response to antigenic stimulus. I. Plasmacellular and lymphoid reactions in the human fetus to intrauterine infection,” Laboratory Investigation, vol. 11, pp. 918–932, 1962. View at Google Scholar · View at Scopus
  48. A. Maheshwari and M. Zemlin, “Ontogeny of the intestinal immune system,” Haematol Report, vol. 2, pp. 18–26, 2006. View at Google Scholar
  49. S. Kuo, A. El Guindy, C. M. Panwala, P. M. Hagan, and V. Camerini, “Differential appearance of T cell subsets in the large and small intestine of neonatal mice,” Pediatric Research, vol. 49, no. 4, pp. 543–551, 2001. View at Google Scholar · View at Scopus
  50. C. S. M. Machado, M. A. M. Rodrigues, and H. V. L. Maffei, “Gut intraepithelial lymphocyte counts in neonates, infants and children,” Acta Paediatrica, vol. 83, no. 12, pp. 1264–1267, 1994. View at Google Scholar · View at Scopus
  51. D. G. Tice, “Ontogeny of natural killer activity in rat small bowel,” Transplantation Proceedings, vol. 22, no. 6, pp. 2458–2459, 1990. View at Google Scholar · View at Scopus
  52. D. J. Todd, D. L. Greiner, A. A. Rossini, J. P. Mordes, and R. Bortell, “An atypical population of NK cells that spontaneously secrete IFN-γ and IL-4 is present in the intraepithelial lymphoid compartment of the rat,” Journal of Immunology, vol. 167, no. 7, pp. 3600–3609, 2001. View at Google Scholar · View at Scopus
  53. S. Marín-Gallén, F. J. Pérez-Cano, M. Castell, C. Castellote, and A. Franch, “Intestinal intraepithelial NK and NKT cell ontogeny in Lewis rats,” Developmental and Comparative Immunology, vol. 32, no. 12, pp. 1405–1408, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. L. Helgeland, P. Brandtzaeg, B. Rolstad, and J. T. Vaage, “Sequential development of intraepithelial γδ and αβ T lymphocytes expressing CD8αβ in neonatal rat intestine: requirement for the thymus,” Immunology, vol. 92, no. 4, pp. 447–456, 1997. View at Google Scholar · View at Scopus
  55. S. Shekhar, S. Milling, C. Jenkins, and G. MacPherson, “Identification and phenotypic characterization of gd T cells in rat lymph,” Research in Veterinary Science, vol. 93, no. 1, pp. 168–171, 2012. View at Google Scholar
  56. B. Meresse and N. Cerf-Bensussan, “Innate T cell responses in human gut,” Seminars in Immunology, vol. 21, no. 3, pp. 121–129, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. J. C. A. T. Steege, W. A. Buurman, and P. P. Forget, “The neonatal development of intraepithelial and lamina propria lymphocytes in the murine small intestine,” Developmental Immunology, vol. 5, no. 2, pp. 121–128, 1997. View at Google Scholar · View at Scopus
  58. H. Cheroutre, “IELs: enforcing law and order in the court of the intestinal epithelium,” Immunological Reviews, vol. 206, pp. 114–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. U. Moebius, G. Kober, A. L. Griscelli, T. Hercend, and S. C. Meuer, “Expression of different CD8 isoforms on distinct human lymphocyte subpopulations,” European Journal of Immunology, vol. 21, no. 8, pp. 1793–1800, 1991. View at Google Scholar · View at Scopus
  60. L. Lefrancois and L. Puddington, “Extrathymic intestinal T-cell development: virtual reality?” Immunology Today, vol. 16, no. 1, pp. 16–21, 1995. View at Publisher · View at Google Scholar · View at Scopus
  61. M. F. Kagnoff, “Current concepts in mucosal immunity III. Ontogeny and function of γδ T cells in the intestine,” American Journal of Physiology, vol. 274, no. 3, part 1, pp. G455–G458, 1998. View at Google Scholar · View at Scopus
  62. L. Peaudecerf and B. Rocha, “Role of the gut as a primary lymphoid organ,” Immunology Letters, vol. 140, no. 1-2, pp. 1–6, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Takimoto, T. Nakamura, M. Takeuchi et al., “Age-associated increase in number of CD4+CD8+ intestinal intraepithelial lymphocytes in rats,” European Journal of Immunology, vol. 22, no. 1, pp. 159–164, 1992. View at Google Scholar · View at Scopus
  64. L. Lefrançois and L. Puddington, “Intestinal and pulmonary mucosal T cells: local heroes fight to maintain the status quo,” Annual Review of Immunology, vol. 24, pp. 681–704, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. I. N. Farstad, H. Carlsen, H. C. Morton, and P. Brandtzaeg, “Immunoglobulin A cell distribution in the human small intestine: phenotypic and functional characteristics,” Immunology, vol. 101, no. 3, pp. 354–363, 2000. View at Publisher · View at Google Scholar · View at Scopus
  66. P. Brandtzaeg, E. S. Baekkevold, and H. C. Morton, “From B to A the mucosal way,” Nature Immunology, vol. 2, no. 12, pp. 1093–1094, 2001. View at Publisher · View at Google Scholar · View at Scopus
  67. J. R. Mora and U. H. von Andrian, “Differentiation and homing of IgA-secreting cells,” Mucosal Immunology, vol. 1, no. 2, pp. 96–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. M. C. Bruder, S. Spanhaak, J. P. Bruijntjes, C. P. P. C. Michielsen, J. G. Vos, and C. F. Kuper, “Intestinal T lymphocytes of different rat strains in immunotoxicity,” Toxicologic Pathology, vol. 27, no. 2, pp. 171–179, 1999. View at Google Scholar · View at Scopus
  69. S. Huling, G. R. Fournier, A. Feren, A. Chuntharapai, and A. L. Jones, “Ontogeny of the secretory immune system: maturation of a functional polymeric immunoglobulin receptor regulated by gene expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 10, pp. 4260–4264, 1992. View at Publisher · View at Google Scholar · View at Scopus
  70. A. G. Cummins, T. W. Steele, J. T. Labrooy, and D. J. C. Shearman, “Maturation of the rat small intestine at weaning: changes in epithelial cell kinetics, bacterial flora, and mucosal immune activity,” Gut, vol. 29, no. 12, pp. 1672–1679, 1988. View at Google Scholar · View at Scopus
  71. F. Shanahan, “The intestinal immune system,” in Physiology of the Gastrointestinal Tract, L. R. Johnson, Ed., pp. 643–684, Raven Press, New York, NY, USA, 1994. View at Google Scholar
  72. W. Y. Kwong, A. E. Wild, P. Roberts, A. C. Willis, and T. P. Fleming, “Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension,” Development, vol. 127, no. 19, pp. 4195–4202, 2000. View at Google Scholar · View at Scopus
  73. L. Bellinger, D. V. Sculley, and S. C. Langley-Evans, “Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats,” International Journal of Obesity, vol. 30, no. 5, pp. 729–738, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. S. S. Rao, A. A. Kale, S. R. Joshi, and S. P. Mahadik, “Sensitivity of fetus and pups to excess levels of maternal intakes of alpha linolenic acid at marginal protein levels in Wistar rats,” Reproductive Toxicology, vol. 24, no. 3-4, pp. 333–342, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. J. Pérez-Cano, C. Ramírez-Santana, M. Molero-Luís et al., “Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy,” Journal of Lipid Research, vol. 50, no. 3, pp. 467–476, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. C. Ramírez-Santana, F. J. Pérez-Cano, C. Castellote et al., “Higher immunoglobulin production in conjugated linoleic acid-supplemented rats during gestation and suckling,” British Journal of Nutrition, vol. 102, no. 6, pp. 858–868, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. F. J. Pérez-Cano, S. Marín-Gallén, M. Castell et al., “Bovine whey protein concentrate supplementation modulates maturation of immune system in suckling rats,” British Journal of Nutrition, vol. 98, no. 1, pp. S80–S84, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. F. J. Pérez-Cano, A. González-Castro, C. Castellote, A. Franch, and M. Castell, “Influence of breast milk polyamines on suckling rat immune system maturation,” Developmental and Comparative Immunology, vol. 34, no. 2, pp. 210–218, 2010. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Ramírez-Santana, C. Castellote, M. Castell et al., “Enhancement of antibody synthesis in rats by feeding cis-9,trans-11 conjugated linoleic acid during early life,” Journal of Nutritional Biochemistry, vol. 22, no. 5, pp. 495–501, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Ramírez-Santana, C. Castellote, M. Castell et al., “Long-term feeding of the cis-9,trans-11 isomer of conjugated linoleic acid reinforces the specific immune response in rats,” Journal of Nutrition, vol. 139, no. 1, pp. 76–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. E. Selga, F. J. Pérez-Cano, A. Franch et al., “Gene expression profiles in rat mesenteric lymph nodes upon supplementation with Conjugated Linoleic Acid during gestation and suckling,” BMC Genomics, vol. 12, article 182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  82. J. Hoshiba, “Method for hand-feeding mouse pups with nursing bottles,” Contemporary Topics in Laboratory Animal Science, vol. 43, no. 3, pp. 50–53, 2004. View at Google Scholar · View at Scopus
  83. T. Motoki, Y. Naomoto, J. Hoshiba et al., “Glutamine depletion induces murine neonatal melena with increased apoptosis of the intestinal epithelium,” World Journal of Gastroenterology, vol. 17, no. 6, pp. 717–726, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. P. G. Reeves, “Components of the AIN-93 diets as improvements in the AIN-76A diet,” Journal of Nutrition, vol. 127, no. 5, pp. 838S–841S, 1997. View at Google Scholar · View at Scopus
  85. O. Ergün, G. Ergün, G. Oktem et al., “Enteral resveratrol supplementation attenuates intestinal epithelial inducible nitric oxide synthase activity and mucosal damage in experimental necrotizing enterocolitis,” Journal of Pediatric Surgery, vol. 42, no. 10, pp. 1687–1694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Mozes, D. Bujnáková, Z. Sefcíková, and V. Kmet, “Developmental changes of gut microflora and enzyme activity in rat pups exposed to fat-rich diet,” Obesity, vol. 16, no. 12, pp. 2610–2615, 2008. View at Publisher · View at Google Scholar · View at Scopus
  87. I. A. Penttila, A. B. Van Spriel, M. F. Zhang et al., “Transforming growth factor-β levels in maternal milk and expression in postnatal rat duodenum and ileum,” Pediatric Research, vol. 44, no. 4, pp. 524–531, 1998. View at Google Scholar · View at Scopus
  88. M. F. Zhang, H. Zola, L. C. Read, and I. A. Penttila, “Identification of soluble transforming growth factor-β receptor III (sTβIII) in rat milk,” Immunology and Cell Biology, vol. 79, no. 3, pp. 291–297, 2001. View at Publisher · View at Google Scholar · View at Scopus
  89. L. Khailova, S. K. M. Patrick, K. M. Arganbright, M. D. Halpern, T. Kinouchi, and B. Dvorak, “Bifidobacterium bifidum reduces apoptosis in the intestinal epithelium in necrotizing enterocolitis,” American Journal of Physiology, vol. 299, no. 5, pp. G1118–G1127, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. W. G. Hall, “Weaning and growth of artificially reared rats,” Science, vol. 190, no. 4221, pp. 1313–1315, 1975. View at Google Scholar · View at Scopus
  91. E. A. Beierle, M. K. Chen, J. E. Hartwich et al., “Artificial rearing of mouse pups: development of a mouse pup in a cup model,” Pediatric Research, vol. 56, no. 2, pp. 250–255, 2004. View at Publisher · View at Google Scholar · View at Scopus
  92. S. C. Langley-Evans, L. Bellinger, and S. McMullen, “Animal models of programming: early life influences on appetite and feeding behaviour,” Maternal and Child Nutrition, vol. 1, no. 3, pp. 142–148, 2005. View at Publisher · View at Google Scholar · View at Scopus
  93. V. L. Foot, C. C. Richardson, W. Jefferson, P. D. Taylor, and M. R. Christie, “Islets in early life are resistant to detrimental effects of a high-fat maternal diet: a study in rats,” Hormone and Metabolic Research, vol. 42, no. 13, pp. 923–929, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. S. C. Langley-Evans, “Fetal programming of adult disease: an overview,” in Fetal Nutrition and Adult Disease: Programming of Chronic Disease through Fetal Exposure to Undernutrition, S. C. Langley-Evans, Ed., pp. 1–20, CABI, Wallingford, UK, 2004. View at Google Scholar
  95. Y. Shahkhalili, J. Moulin, I. Zbinden, O. Aprikian, and K. Macé, “Comparison of two models of intrauterine growth restriction for early catch-up growth and later development of glucose intolerance and obesity in rats,” American Journal of Physiology, vol. 298, no. 1, pp. R141–R146, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. J. F. de Melo, N. Aloulou, J.-L. Duval et al., “Effect of a neonatal low-protein diet on the morphology of myotubes in culture and the expression of key proteins that regulate myogenesis in young and adult rats,” European Journal of Nutrition, vol. 50, no. 4, pp. 243–250, 2011. View at Google Scholar
  97. S. S. Lima, M. C. L. D. Santos, M. P. Sinder, A. S. Moura, P. C. Barradas, and F. Tenório, “Glycogen stores are impaired in hypothalamic nuclei of rats malnourished during early life,” Nutritional Neuroscience, vol. 13, no. 1, pp. 21–28, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. J. Fló, F. Elías, R. Benedetti, and E. Massouh, “Reversible effects on B and T cells of the gut-associated lymphoid tissues in rats malnourished during suckling: impaired induction of the immune response to Intra-Peyer patches immunization with cholera toxin,” Clinical Immunology and Immunopathology, vol. 80, no. 2, pp. 147–154, 1996. View at Publisher · View at Google Scholar · View at Scopus
  99. Z. Šefèíková, D. Bujòáková, Ľ. Raèek, V. Kmet, and Š. Mozeš, “Developmental changes in gut microbiota and enzyme activity predict obesity risk in rats arising from reduced nests,” Physiological Research, vol. 60, no. 2, pp. 337–346, 2011. View at Google Scholar · View at Scopus
  100. Y. Shahkhalili, K. Macé, J. Moulin, I. Zbinden, and K. J. Acheson, “The fat:Carbohydrate energy ratio of the weaning diet programs later susceptibility to obesity in male sprague dawley rats,” Journal of Nutrition, vol. 141, no. 1, pp. 81–86, 2011. View at Publisher · View at Google Scholar · View at Scopus
  101. B. Barlow and T. V. Santulli, “Importance of multiple episodes of hypoxia or cold stress on the development of enterocolitis in an animal model,” Surgery, vol. 77, no. 5, pp. 687–690, 1975. View at Google Scholar · View at Scopus
  102. E. P. Nadler, E. Dickinson, A. Knisely et al., “Expression of inducible nitric oxide synthase and interleukin-12 in experimental necrotizing enterocolitis,” Journal of Surgical Research, vol. 92, no. 1, pp. 71–77, 2000. View at Publisher · View at Google Scholar · View at Scopus
  103. C. Sodhi, W. Richardson, S. Gribar, and D. J. Hackam, “The development of animal models for the study of necrotizing enterocolitis,” Disease Models and Mechanisms, vol. 1, no. 2-3, pp. 94–98, 2008. View at Publisher · View at Google Scholar · View at Scopus
  104. M. S. Caplan, E. Hedlund, L. Adler, and W. Hsueh, “Role of asphyxia and feeding in a neonatal rat model of necrotizing enterocolitis,” Pediatric Pathology, vol. 14, no. 6, pp. 1017–1028, 1994. View at Google Scholar · View at Scopus
  105. B. Dvorak, M. D. Halpern, H. Holubec et al., “Epidermal growth factor reduces the development of necrotizing enterocolitis in a neonatal rat model,” American Journal of Physiology, vol. 282, no. 1, pp. G156–G164, 2002. View at Google Scholar · View at Scopus
  106. M. D. Halpern, H. Holubec, J. A. Clark et al., “Epidermal growth factor reduces hepatic sequelae in experimental necrotizing enterocolitis,” Biology of the Neonate, vol. 89, no. 4, pp. 227–235, 2006. View at Publisher · View at Google Scholar · View at Scopus
  107. C. J. Hunter, M. Williams, M. Petrosyan et al., “Lactobacillus bulgaricus prevents intestinal epithelial cell injury caused by enterobacter sakazakii-induced nitric oxide both in vitro and in the newborn rat model of necrotizing enterocolitis,” Infection and Immunity, vol. 77, no. 3, pp. 1031–1043, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Khailova, K. Dvorak, K. M. Arganbright et al., “Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis,” American Journal of Physiology, vol. 297, no. 5, pp. G940–G949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. N. Kelly, K. Friend, P. Boyle et al., “The role of the glutathione antioxidant system in gut barrier failure in a rodent model of experimental necrotizing enterocolitis,” Surgery, vol. 136, no. 3, pp. 557–566, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. J. Feng, O. N. El-Assal, and G. E. Besner, “Heparin-binding epidermal growth factor-like growth factor reduces intestinal apoptosis in neonatal rats with necrotizing enterocolitis,” Journal of Pediatric Surgery, vol. 41, no. 4, pp. 742–747, 2006. View at Publisher · View at Google Scholar · View at Scopus
  111. A. K. C. Leung, J. D. Kellner, and H. D. Davies, “Rotavirus gastroenteritis,” Advances in Therapy, vol. 22, no. 5, pp. 476–487, 2005. View at Google Scholar · View at Scopus
  112. M. Ciarlet, M. E. Conner, M. J. Finegold, and M. K. Estes, “Group A rotavirus infection and age-dependent diarrheal disease in rats: a new animal model to study the pathophysiology of rotavirus infection,” Journal of Virology, vol. 76, no. 1, pp. 41–57, 2002. View at Publisher · View at Google Scholar · View at Scopus
  113. S. E. Blutt, M. Fenaux, K. L. Warfield, H. B. Greenberg, and M. E. Conner, “Active viremia in rotavirus-infected mice,” Journal of Virology, vol. 80, no. 13, pp. 6702–6705, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. C. Guerin-Danan, J. C. Meslin, F. Lambre et al., “Development of a heterologous model in germfree suckling rats for studies of rotavirus diarrhea,” Journal of Virology, vol. 72, no. 11, pp. 9298–9302, 1998. View at Google Scholar · View at Scopus
  115. F. J. Pérez-Cano, M. Castell, C. Castellote, and A. Franch, “Characterization of clinical and immune response in a rotavirus diarrhea model in suckling Lewis rats,” Pediatric Research, vol. 62, no. 6, pp. 658–663, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. H. Qiao, L. C. Duffy, E. Griffiths et al., “Immune responses in rhesus rotavirus-challenged Balb/c mice treated with bifidobacteria and prebiotic supplements,” Pediatric Research, vol. 51, no. 6, pp. 750–755, 2002. View at Publisher · View at Google Scholar · View at Scopus
  117. F. J. Pérez-Cano, S. Marín-Gallén, M. Castell et al., “Supplementing suckling rats with whey protein concentrate modulates the immune response and ameliorates rat rotavirus-induced diarrhea,” Journal of Nutrition, vol. 138, no. 12, pp. 2392–2398, 2008. View at Publisher · View at Google Scholar · View at Scopus
  118. L. A. Lee and A. W. Burks, “Food allergies: prevalence, molecular characterization, and treatment/prevention strategies,” Annual Review of Nutrition, vol. 26, pp. 539–565, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. L. M. J. Knippels, G. F. Houben, S. Spanhaak, and A. H. Penninks, “An oral sensitization model in Brown Norway rats to screen for potential allergenicity of food proteins,” Methods, vol. 19, no. 1, pp. 78–82, 1999. View at Publisher · View at Google Scholar · View at Scopus
  120. L. M. J. Knippels and A. H. Penninks, “Recent advances using rodent models for predicting human allergenicity,” Toxicology and Applied Pharmacology, vol. 207, no. 2, supplement 1, pp. S157–S160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  121. M. Abril-Gil, M. Massot-Cladera, F. J. Pérez-Cano, C. Castellote, A. Franch, and M. Castell, “A diet enriched with cocoa prevents IgE synthesis in a rat allergy model,” Pharmacological Research, vol. 65, no. 6, pp. 603–608, 2012. View at Google Scholar
  122. I. Penttila, “Effects of transforming growth factor-beta and formula feeding on systemic immune responses to dietary β-lactoglobulin in allergy-prone rats,” Pediatric Research, vol. 59, no. 5, pp. 650–655, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. A. El-Merhibi, K. Lymn, I. Kanter, and I. A. Penttila, “Early oral ovalbumin exposure during maternal milk feeding prevents spontaneous allergic sensitization in allergy-prone rat pups,” Clinical and Developmental Immunology, vol. 2012, Article ID 396232, 10 pages, 2012. View at Publisher · View at Google Scholar
  124. T. Tschernig, D. Neumann, A. Pich, M. Dorsch, and R. Pabst, “Experimental bronchial asthma—the strength of the species rat,” Current Drug Targets, vol. 9, no. 6, pp. 466–469, 2008. View at Publisher · View at Google Scholar · View at Scopus