Table of Contents Author Guidelines Submit a Manuscript
Erratum

An erratum for this article has been published. To view the erratum, please click here.

Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 563760, 8 pages
http://dx.doi.org/10.1155/2012/563760
Review Article

Sensitization to Cockroach Allergen: Immune Regulation and Genetic Determinants

Department of Medicine, Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA

Received 1 August 2011; Accepted 3 October 2011

Academic Editor: Shau-Ku Huang

Copyright © 2012 Peisong Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Huss, N. F. Adkinson, P. A. Eggleston, C. Dawson, M. L. Van Natta, and R. G. Hamilton, “House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhood Asthma Management Program,” Journal of Allergy and Clinical Immunology, vol. 107, no. 1, pp. 48–54, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. G. Hamilton, “Assessment of indoor allergen exposure,” Current Allergy and Asthma Reports, vol. 5, no. 5, pp. 394–401, 2005. View at Google Scholar · View at Scopus
  3. E. C. Matsui, R. A. Wood, C. Rand et al., “Cockroach allergen exposure and sensitization in suburban middle-class children with asthma,” Journal of Allergy and Clinical Immunology, vol. 112, no. 1, pp. 87–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. S. H. Al-Mousawi, H. Lovel, N. Behbehani, N. Arifhodzic, A. Woodcock, and A. Custovic, “Asthma and sensitization in a community with low indoor allergen levels and low pet-keeping frequency,” Journal of Allergy and Clinical Immunology, vol. 114, no. 6, pp. 1389–1394, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. D. L. Rosenstreich, P. Eggleston, M. Kattan et al., “The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma,” The New England Journal of Medicine, vol. 336, no. 19, pp. 1356–1363, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Gruchalla, J. Pongracic, M. Plaut et al., “Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity,” Journal of Allergy and Clinical Immunology, vol. 115, no. 3, pp. 478–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. O. Olmedo, I. F. Goldstein, L. Acosta et al., “Neighborhood differences in exposure and sensitization to cockroach, mouse, dust mite, cat, and dog allergens in New York City,” Journal of Allergy and Clinical Immunology, vol. 128, no. 2, pp. 284–292, 2011. View at Publisher · View at Google Scholar
  8. S. Illi, E. von Mutius, S. Lau, B. Niggemann, C. Grüber, and U. Wahn, “Perennial allergen sensitisation early in life and chronic asthma in children: a birth cohort study,” The Lancet, vol. 368, no. 9537, pp. 763–770, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Kuehr, T. Frischer, R. Meinert et al., “Mite allergen exposure is a risk for the incidence of specific sensitization,” Journal of Allergy and Clinical Immunology, vol. 94, no. 1, pp. 44–52, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Page, V. S. Hughes, G. W. Bennett, and H. R. Wong, “German cockroach proteases regulate matrix metalloproteinase-9 in human bronchial epithelial cells,” Allergy, vol. 61, no. 8, pp. 988–995, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Page, K. M. Lierl, N. Herman, and M. Wills-Karp, “Differences in susceptibility to German cockroach frass and its associated proteases in induced allergic inflammation in mice,” Respiratory Research, vol. 8, p. 91, 2007. View at Google Scholar · View at Scopus
  12. W. Cookson, “The immunogenetics of asthma and eczema: a new focus on the epithelium,” Nature Reviews Immunology, vol. 4, no. 12, pp. 978–988, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. S. K. Jeong, H. J. Kim, J. K. Youm et al., “Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery,” Journal of Investigative Dermatology, vol. 128, no. 8, pp. 1930–1939, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Page, V. S. Strunk, and M. B. Hershenson, “Cockroach proteases increase IL-8 expression in human bronchial epithelial cells via activation of protease-activated receptor (PAR)-2 and extracellular-signal-regulated kinase,” Journal of Allergy and Clinical Immunology, vol. 112, no. 6, pp. 1112–1118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Page, V. S. Hughes, K. K. Odoms, K. E. Dunsmore, and M. B. Hershenson, “German cockroach proteases regulate interleukin-8 expression via nuclear factor for interleukin-6 in human bronchial epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 32, no. 3, pp. 225–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. Knight, S. Lim, A. K. Scaffidi et al., “Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma,” Journal of Allergy and Clinical Immunology, vol. 108, no. 5, pp. 797–803, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Schmidlin, S. Amadesi, K. Dabbagh et al., “Protease-activated receptor 2 mediates eosinophil infiltration and hyperreactivity in allergic inflammation of the airway,” Journal of Immunology, vol. 169, no. 9, pp. 5315–5321, 2002. View at Google Scholar · View at Scopus
  18. K. Page, J. R. Ledford, P. Zhou, K. Dienger, and M. Wills-Karp, “Mucosal sensitization to German cockroach involves protease-activated receptor-2,” Respiratory Research, vol. 11, p. 62, 2010. View at Google Scholar · View at Scopus
  19. K. Page, K. M. Lierl, V. S. Hughes, P. Zhou, J. R. Ledford, and M. Wills-Karp, “TLR2-mediated activation of neutrophils in response to German cockroach frass,” Journal of Immunology, vol. 180, no. 9, pp. 6317–6324, 2008. View at Google Scholar · View at Scopus
  20. K. Page, J. R. Ledford, P. Zhou, and M. Wills-Karp, “A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice,” Journal of Immunology, vol. 183, no. 5, pp. 3400–3408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. B. H. Geijtenbeek, S. J. Van Vliet, A. Engering, B. A. 'T Hart, and Y. Van Kooyk, “Self- and nonself-recognition by C-type lectins on dendritic cells,” Annual Review of Immunology, vol. 22, pp. 33–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. F. Meyer-Wentrup, A. Cambi, G. J. Adema, and C. G. Figdor, ““Sweet talk”: closing in on C type lectin signaling,” Immunity, vol. 22, no. 4, pp. 399–400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. Y. Van Kooyk and T. B. H. Geijtenbeek, “DC-SIGN: escape mechanism for pathogens,” Nature Reviews Immunology, vol. 3, no. 9, pp. 697–709, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. P. J. Royer, M. Emara, C. Yang et al., “The mannose receptor mediates the uptake of diverse native allergens by dendritic cells and determines allergen-induced T cell polarization through modulation of IDO Activity,” Journal of Immunology, vol. 185, no. 3, pp. 1522–1531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Emara, P. -J. Royer, Z. Abbas et al., “Recognition of the major cat allergen fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity,” Journal of Biological Chemistry, vol. 286, no. 15, pp. 13033–13040, 2011. View at Publisher · View at Google Scholar
  26. S. C. Hsu, C. H. Chen, S. H. Tsai et al., “Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells,” Journal of Biological Chemistry, vol. 285, no. 11, pp. 7903–7910, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Gao, D. N. Grigoryev, N. M. Rafaels et al., “CD14, a key candidate gene associated with a specific immune response to cockroach,” Clinical and Experimental Allergy, vol. 40, no. 9, pp. 1353–1364, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Kang, “Study on cockroach antigen as a probable causative agent in bronchial asthma,” Journal of Allergy and Clinical Immunology, vol. 58, no. 3, pp. 357–365, 1976. View at Google Scholar · View at Scopus
  29. E. Fernández-Caldas and V. I. Calvo, “Mite allergens,” Current Allergy and Asthma Reports, vol. 5, no. 5, pp. 402–410, 2005. View at Google Scholar · View at Scopus
  30. H. S. Nelson, S. J. Szefler, J. Jacobs, K. Huss, G. Shapiro, and A. L. Sternberg, “The relationships among environmental allergen sensitization, allergen exposure, pulmonary function, and bronchial hyperresponsiveness in the childhood asthma management program,” Journal of Allergy and Clinical Immunology, vol. 104, no. 4 I, pp. 775–785, 1999. View at Google Scholar · View at Scopus
  31. M. Yazicioglu, N. Oner, C. Celtik, O. Okutan, and O. Pala, “Sensitization to common allergens, especially pollens, among children with respiratory allergy in the Trakya region of Turkey,” Asian Pacific Journal of Allergy and Immunology, vol. 22, no. 4, pp. 183–190, 2004. View at Google Scholar · View at Scopus
  32. A. A. Litonjua, V. J. Carey, H. A. Burge, S. T. Weiss, and D. R. Gold, “Exposure to cockroach allergen in the home is associated with incident doctor-diagnosed asthma and recurrent wheezing,” Journal of Allergy and Clinical Immunology, vol. 107, no. 1, pp. 41–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. A. E. Platts-Mills, G. Rakes, and P. W. Heymann, “The relevance of allergen exposure to the development of asthma in childhood,” Journal of Allergy and Clinical Immunology, vol. 105, no. 2, pp. S503–S508, 2000. View at Google Scholar · View at Scopus
  34. J. Wang, C. M. Visness, A. Calatroni, P. J. Gergen, H. E. Mitchell, and H. A. Sampson, “Effect of environmental allergen sensitization on asthma morbidity in inner-city asthmatic children,” Clinical and Experimental Allergy, vol. 39, no. 9, pp. 1381–1389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. E. C. Matsui, H. A. Sampson, H. T. Bahnson et al., “Allergen-specific IgE as a biomarker of exposure plus sensitization in inner-city adolescents with asthma,” Allergy, vol. 65, no. 11, pp. 1414–1422, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. G. L. Chew, M. S. Perzanowski, S. M. Canfield et al., “Cockroach allergen levels and associations with cockroach-specific IgE,” Journal of Allergy and Clinical Immunology, vol. 121, no. 1, pp. 240–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. R. M. Helm, D. L. Squillace, R. T. Jones, and R. J. Brenner, “Shared allergenic activity in Asian (Blattella asahinai), German (Blattella germanica), American (Periplaneta americana), and Oriental (Blatta orientalis) cockroach species,” International Archives of Allergy and Applied Immunology, vol. 92, no. 2, pp. 154–161, 1990. View at Google Scholar · View at Scopus
  38. D. K. Ledford, “Indoor allergens,” Journal of Allergy and Clinical Immunology, vol. 94, no. 2, pp. 327–334, 1994. View at Google Scholar · View at Scopus
  39. S. Boitano, A. N. Flynn, C. L. Sherwood et al., “Alternaria alternata serine proteases induce lung inflammation and airway epithelial cell activation via PAR2,” American Journal of Physiology, vol. 300, no. 4, pp. L605–L614, 2011. View at Publisher · View at Google Scholar
  40. H. Kouzaki, S. M. O'Grady, C. B. Lawrence, and H. Kita, “Proteases induce production of thymic stromal lymphopoietin by airway epithelial cells through protease-activated receptor-2,” Journal of Immunology, vol. 183, no. 2, pp. 1427–1434, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Wada, Y. Matsuwaki, H. Moriyama, and H. Kita, “Cockroach induces inflammatory responses through protease-dependent pathways,” International Archives of Allergy and Immunology, vol. 155, supplement 1, pp. 135–141, 2011. View at Publisher · View at Google Scholar
  42. S. Wünschmann, A. Gustchina, M. D. Chapman, and A. Pomés, “Cockroach allergen Bla g 2: an unusual aspartic proteinase,” Journal of Allergy and Clinical Immunology, vol. 116, no. 1, pp. 140–145, 2005. View at Publisher · View at Google Scholar
  43. J. Banchereau and R. M. Steinman, “Dendritic cells and the control of immunity,” Nature, vol. 392, no. 6673, pp. 245–252, 1998. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Banchereau, F. Briere, C. Caux et al., “Immunobiology of dendritic cells,” Annual Review of Immunology, vol. 18, pp. 767–811, 2000. View at Publisher · View at Google Scholar · View at Scopus
  45. J. Banchereau, B. Pulendran, R. Steinman, and K. Palucka, “Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries?” Journal of Experimental Medicine, vol. 192, no. 12, pp. F39–F44, 2000. View at Google Scholar · View at Scopus
  46. L. S. Van Rijt and B. N. Lambrecht, “Dendritic cells in asthma: a function beyond sensitization,” Clinical and Experimental Allergy, vol. 35, no. 9, pp. 1125–1134, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. B. N. Lambrecht, M. De Veerman, A. J. Coyle, J. C. Gutierrez-Ramos, K. Thielemans, and R. A. Pauwels, “Myeloid dendritic cells induce TH2 responses to inhaled antigen, leading to eosinophilic airway inflammation,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 551–559, 2000. View at Google Scholar · View at Scopus
  48. B. N. Lambrecht and H. Hammad, “Taking our breath away: dendritic cells in the pathogenesis of asthma,” Nature Reviews Immunology, vol. 3, no. 12, pp. 994–1003, 2003. View at Google Scholar · View at Scopus
  49. J. H. Mo, Y. J. Chung, T. Hayashi, J. Lee, and E. Raz, “The role of plasmacytoid and myeloid dendritic cells in induction of asthma in a mouse model and the effect of a TLR9 agonist on dendritic cells,” Allergy, Asthma and Immunology Research, vol. 3, no. 3, pp. 199–204, 2011. View at Publisher · View at Google Scholar
  50. L. Farkas, E. O. Kvale, F. E. Johansen, F. L. Jahnsen, and F. Lund-Johansen, “Plasmacytoid dendritic cells activate allergen-specific TH2 memory cells: modulation by CpG oligodeoxynucleotides,” Journal of Allergy and Clinical Immunology, vol. 114, no. 2, pp. 436–443, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. F. L. Jahnsen, F. Lund-Johansen, J. F. Dunne, L. Farkas, R. Haye, and P. Brandtzaeg, “Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy,” Journal of Immunology, vol. 165, no. 7, pp. 4062–4068, 2000. View at Google Scholar · View at Scopus
  52. A. Matsuzawa, K. Saegusa, T. Noguchi et al., “ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity,” Nature Immunology, vol. 6, no. 6, pp. 587–592, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Takeda and S. Akira, “Toll-like receptors in innate immunity,” International Immunology, vol. 17, no. 1, pp. 1–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. B. Dua, R. M. Watson, G. M. Gauvreau, and P. M. O'Byrne, “Myeloid and plasmacytoid dendritic cells in induced sputum after allergen inhalation in subjects with asthma,” Journal of Allergy and Clinical Immunology, vol. 126, no. 1, pp. 133–139, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Ober, A. Tsalenko, R. Parry, and N. J. Cox, “A second-generation genomewide screen for asthma-susceptibility alleles in a founder population,” American Journal of Human Genetics, vol. 67, no. 5, pp. 1154–1162, 2000. View at Google Scholar · View at Scopus
  56. D. R. Jackola, S. Basu, C. L. Liebeler et al., “CD14 promoter polymorphisms in atopic families: implications for modulated allergen-specific immunoglobulin E and G1 responses,” International Archives of Allergy and Immunology, vol. 139, no. 3, pp. 217–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Spörri and C. Reis e Sousa, “Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function,” Nature Immunology, vol. 6, no. 2, pp. 163–170, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Blander and R. Medzhitov, “Toll-dependent selection of microbial antigens for presentation by dendritic cells,” Nature, vol. 440, no. 7085, pp. 808–812, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Møller-Larsen, M. Nyegaard, A. Haagerup, J. Vestbo, T. A. Kruse, and A. D. Børglum, “Association analysis identifies TLR7 and TLR8 as novel risk genes in asthma and related disorders,” Thorax, vol. 63, no. 12, pp. 1064–1069, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. T. B. H. Geijtenbeek, S. J. Van Vliet, E. A. Koppel et al., “Mycobacteria target DC-SIGN to suppress dendritic cell function,” Journal of Experimental Medicine, vol. 197, no. 1, pp. 7–17, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Zhang, S. D. Tachado, N. Patel et al., “Negative regulatory role of mannose receptors on human alveolar macrophage proinflammatory cytokine release in vitro,” Journal of Leukocyte Biology, vol. 78, no. 3, pp. 665–674, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. W. G. Shreffler, R. R. Castro, Z. Y. Kucuk et al., “The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro,” Journal of Immunology, vol. 177, no. 6, pp. 3677–3685, 2006. View at Google Scholar · View at Scopus
  63. A. Togias, E. Horowitz, D. Joyner, L. Guydon, and F. Malveaux, “Evaluating the factors that relate to asthma severity in adolescents,” International Archives of Allergy and Immunology, vol. 113, no. 1–3, pp. 87–95, 1997. View at Google Scholar · View at Scopus
  64. Y. Jin, W. Wang, Y. Xu, J. Zhao, H. Liu, and S. Xue, “Familial aggregation of skin sensitization to aeroallergens in a rural area in China,” International Archives of Allergy and Immunology, vol. 148, no. 1, pp. 81–86, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. X. Xu, Z. Fang, B. Wang et al., “A genomewide search for quantitative-trait loci underlying asthma,” American Journal of Human Genetics, vol. 69, no. 6, pp. 1271–1277, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. G. M. Hunninghake, J. Lasky-Su, M. E. Soto-Quirós et al., “Sex-stratified linkage analysis identifies a female-specific locus for IgE to cockroach in Costa Ricans,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 8, pp. 830–836, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Donfack, A. Tsalenko, D. M. Hoki et al., “HLA-DRB1*01 alleles are associated with sensitization to cockroach allergens,” Journal of Allergy and Clinical Immunology, vol. 105, no. 5, pp. 960–966, 2000. View at Google Scholar · View at Scopus
  68. T. F. Leung, N. L. S. Tang, Y. M. Sung et al., “Genetic association study between mbl2 and asthma phenotypes in Chinese children,” Pediatric Allergy and Immunology, vol. 17, no. 7, pp. 501–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Pistiner, G. M. Hunninghake, M. E. Soto-Quiros et al., “Polymorphisms in IL12A and cockroach allergy in children with asthma,” Clinical and Molecular Allergy, vol. 6, article 6, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. J. S. Burr, S. L. Kimzey, D. R. Randolph, and J. M. Green, “CD28 and CTLA4 coordinately regulate airway inflammatory cell recruitment and T-helper cell differentiation after inhaled allergen,” American Journal of Respiratory Cell and Molecular Biology, vol. 24, no. 5, pp. 563–568, 2001. View at Google Scholar · View at Scopus
  71. C. N. Adra, P. S. Gao, X. Q. Mao et al., “Variants of B cell lymphoma 6 (BCL6) and marked atopy,” Clinical Genetics, vol. 54, no. 4, pp. 362–364, 1998. View at Publisher · View at Google Scholar · View at Scopus
  72. C. M. Tschopp, N. Spiegl, S. Didichenko et al., “Granzyme B, a novel mediator of allergic inflammation: its induction and release in blood basophils and human asthma,” Blood, vol. 108, no. 7, pp. 2290–2299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Montes-Vizuet, A. Vega-Miranda, E. Valencia-Maqueda, M. C. Negrete-García, J. R. Velásquez, and L. M. Teran, “CC chemokine ligand 1 is released into the airways of atopic asthmatics,” European Respiratory Journal, vol. 28, no. 1, pp. 59–67, 2006. View at Publisher · View at Google Scholar · View at Scopus