Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 563838, 9 pages
http://dx.doi.org/10.1155/2012/563838
Research Article

Immunogenicity and Protective Efficacy of a Novel Recombinant BCG Strain Overexpressing Antigens Ag85A and Ag85B

Laboratory of Biosafety, Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science & Technology, No. 13, Hangkong Road, Wuhan 430030, China

Received 9 December 2011; Accepted 16 February 2012

Academic Editor: K. Blaser

Copyright © 2012 Chun Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Andersen and T. M. Doherty, “The success and failure of BCG—implications for a novel tuberculosis vaccine,” Nature Reviews Microbiology, vol. 3, no. 8, pp. 656–662, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. A. Horwitz, G. Harth, B. J. Dillon, and S. Maslesa-Galic, “Recombinant bacillus Calmette-Guerin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity againts tuberculosis than conventional BCG vaccines in a highly susceptible animal model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13853–13858, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. A. Horwitz, G. Harth, B. J. Dillon, and S. Masleša-Galić, “Extraordinarily few organisms of a live recombinant BCG vaccine against tuberculosis induce maximal cell-mediated and protective immunity,” Vaccine, vol. 24, no. 4, pp. 443–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. M. A. Horwitz, G. Harth, B. J. Dillon, and S. Masleša-Galić, “A novel live recombinant mycobacterial vaccine against bovine tuberculosis more potent than BCG,” Vaccine, vol. 24, no. 10, pp. 1593–1600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. M. A. Horwitz and G. Harth, “A new vaccine against tuberculosis affords greater survival after challenge than the current vaccine in the guinea pig model of pulmonary tuberculosis,” Infection and Immunity, vol. 71, no. 4, pp. 1672–1679, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. I. Sugawara, Z. Li, L. Sun, T. Udagawa, and T. Taniyama, “Recombinant BCG Tokyo (Ag85A) protects cynomolgus monkeys (Macaca fascicularis) infected with H37Rv Mycobacterium tuberculosis,” Tuberculosis, vol. 87, no. 6, pp. 518–525, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. I. Sugawara, T. Udagawa, and T. Taniyama, “Protective efficacy of recombinant (Ag85A) BCG Tokyo with Ag85A peptide boosting against Mycobacterium tuberculosis-infected guinea pigs in comparison with that of DNA vaccine encoding Ag85A,” Tuberculosis, vol. 87, no. 2, pp. 94–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. I. Sugawara, L. Sun, S. Mizuno, and T. Taniyama, “Protective efficacy of recombinant BCG Tokyo (Ag85A) in rhesus monkeys (Macaca mulatta) infected intratracheally with H37Rv Mycobacterium tuberculosis,” Tuberculosis, vol. 89, no. 1, pp. 62–67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Jain, B. Dey, N. Dhar et al., “Enhanced and enduring protection against tuberculosis by recombinant BCG-Ag85C and its association with modulation of cytokine profile in lung,” PLoS One, vol. 3, no. 12, Article ID e3869, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. Pym, P. Brodin, L. Majlessi et al., “Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis,” Nature Medicine, vol. 9, no. 5, pp. 533–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. X. L. Fan, T. H. Yu, Q. Gao, and W. Yao, “Immunological properties of recombinant Mycobacterium bovis bacillus Calmette-Guérin strain expressing fusion protein IL-2-ESAT-6,” Acta Biochimica et Biophysica Sinica, vol. 38, no. 10, pp. 683–690, 2006. View at Publisher · View at Google Scholar
  12. L. M. Wang, C. H. Shi, X. L. Fan, Y. Xue, Y. L. Bai, and Z. K. Xu, “Expression and immunogenicity of recombinant Mycobacterium bovis Bacillus Calmette-Guérin strains secreting the antigen ESAT-6 from Mycobacterium tuberculosis in mice,” Chinese Medical Journal, vol. 120, no. 14, pp. 1220–1225, 2007. View at Google Scholar · View at Scopus
  13. B. Dey, R. Jain, A. Khera et al., “Boosting with a DNA vaccine expressing ESAT-6 (DNAE6) obliterates the protection imparted by recombinant BCG (rBCGE6) against aerosol Mycobacterium tuberculosis infection in guinea pigs,” Vaccine, vol. 28, no. 1, pp. 63–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Shi, L. Chen, Z. Chen et al., “Enhanced protection against tuberculosis by vaccination with recombinant BCG over-expressing HspX protein,” Vaccine, vol. 28, no. 32, pp. 5237–5244, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. F. A. Mir, S. H. E. Kaufmann, and A. N. Eddine, “A multicistronic DNA vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire,” Clinical and Vaccine Immunology, vol. 16, no. 10, pp. 1467–1475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S. C. Derrick, A. L. Yang, and S. L. Morris, “A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity,” Vaccine, vol. 23, no. 6, pp. 780–788, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. A. W. Skeiky, M. R. Alderson, P. J. Ovendale et al., “Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein,” Journal of Immunology, vol. 172, no. 12, pp. 7618–7628, 2004. View at Google Scholar · View at Scopus
  18. J. Lu, C. Cai, C. Wang et al., “Immunogenicity and protective efficacy against murine tuberculosis of a prime-boost regimen with BCG and a DNA vaccine expressing ESAT-6 and Ag85A fusion protein,” Clinical and Developmental Immunology, vol. 2011, Article ID 617892, 10 pages, 2011. View at Publisher · View at Google Scholar
  19. W. Yuan, N. Dong, L. Zhang et al., “Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice,” Vaccine, vol. 30, no. 14, pp. 2490–2497, 2012. View at Google Scholar
  20. Y. Q. Qie, J. L. Wang, B. D. Zhu et al., “Evaluation of a new recombinant BCG which contains mycobacterial antigen ag85B-mpt64190-198-mtb8.4 in C57/BL6 mice,” Scandinavian Journal of Immunology, vol. 67, no. 2, pp. 133–139, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. L. Wang, Y. Q. Qie, B. D. Zhu et al., “Evaluation of a recombinant BCG expressing antigen Ag85B and PPE protein Rv3425 from DNA segment RD11 of Mycobacterium tuberculosis in C57BL/6 mice,” Medical Microbiology and Immunology, vol. 198, no. 1, pp. 5–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Q. Qie, J. L. Wang, W. Liu et al., “More vaccine efficacy studies on the recombinant bacille calmette-guerin co-expressing Ag85B, Mpt64190-198 and Mtb8.4,” Scandinavian Journal of Immunology, vol. 69, no. 4, pp. 342–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Shen, C. Wang, E. Yang et al., “Novel recombinant BCG coexpressing Ag85B, ESAT-6 and mouse TNF-α induces significantly enhanced cellular immune and antibody responses in C57BL/6 mice,” Microbiology and Immunology, vol. 54, no. 8, pp. 435–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Xu, B. Zhu, Q. Wang et al., “Recombinant BCG coexpressing Ag85B, ESAT-6 and mouse-IFN-γ confers effective protection against Mycobacterium tuberculosis in C57BL/6 mice,” FEMS Immunology and Medical Microbiology, vol. 51, no. 3, pp. 480–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Xu, W. Liu, H. Shen, J. Yan, E. Yang, and H. Wang, “Recombinant Mycobacterium bovis BCG expressing chimaeric protein of Ag85B and ESAT-6 enhances immunostimulatory activity of human macrophages,” Microbes and Infection, vol. 12, no. 8-9, pp. 683–689, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Fan, Q. Gao, and R. Fu, “Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model,” Microbiological Research, vol. 164, no. 4, pp. 374–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. P. E. M. Fine, “Variation in protection by BCG: implications of and for heterologous immunity,” Lancet, vol. 346, no. 8986, pp. 1339–1345, 1995. View at Google Scholar · View at Scopus
  28. P. Andersen, “Tuberculosis vaccines—an update,” Nature Reviews Microbiology, vol. 5, no. 7, pp. 484–487, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Dennehy and A. L. Williamson, “Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines,” Vaccine, vol. 23, no. 10, pp. 1209–1224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Post, C. Manca, O. Neyrolles, B. Ryffel, D. B. Young, and G. Kaplan, “Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits Mycobacterium smegmatis-induced cytokine production by human macrophages in vitro,” Infection and Immunity, vol. 69, no. 3, pp. 1433–1439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Rao, N. Dhar, H. Shakila et al., “Increased expression of Mycobacterium tuberculosis 19 kDa lipoprotein obliterates the protective efficacy of BCG by polarizing host immune responses to the Th2 subtype,” Scandinavian Journal of Immunology, vol. 61, no. 5, pp. 410–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. H. Hovav, J. Mullerad, L. Davidovitch et al., “The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection,” Infection and Immunity, vol. 71, no. 6, pp. 3146–3154, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. A. Tanghe, O. Denis, B. Lambrecht, V. Motte, T. Van Den Berg, and K. Huygen, “Tuberculosis DNA vaccine encoding Ag85A is immunogenic and protective when administered by intramuscular needle injection but not by epidermal gene gun bombardment,” Infection and Immunity, vol. 68, no. 7, pp. 3854–3860, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Bao, W. Chen, H. Zhang, and X. Wang, “Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis bacillus Calmette-Guérin strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis,” Infection and Immunity, vol. 71, no. 4, pp. 1656–1661, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. A. S. Pym, P. Brodin, L. Majlessi et al., “Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis,” Nature Medicine, vol. 9, no. 5, pp. 533–539, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. T. Belisle, V. D. Vissa, T. Sievert, K. Takayama, P. J. Brennan, and G. S. Besra, “Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis,” Science, vol. 276, no. 5317, pp. 1420–1422, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. J. L. Flynn, J. Chan, K. J. Triebold, D. K. Dalton, T. A. Stewart, and B. R. Bloom, “An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection,” Journal of Experimental Medicine, vol. 178, no. 6, pp. 2249–2254, 1993. View at Publisher · View at Google Scholar · View at Scopus
  38. L. F. Barker, M. J. Brennan, P. K. Rosenstein, and J. C. Sadoff, “Tuberculosis vaccine research: the impact of immunology,” Current Opinion in Immunology, vol. 21, no. 3, pp. 331–338, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. Dheda, S. K. Schwander, B. Zhu, R. N. Van Zyl-Smit, and Y. Zhang, “The immunology of tuberculosis: from bench to bedside,” Respirology, vol. 15, no. 3, pp. 433–450, 2010. View at Publisher · View at Google Scholar · View at Scopus