Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012 (2012), Article ID 612809, 5 pages
http://dx.doi.org/10.1155/2012/612809
Review Article

Bartonella Infection in Immunocompromised Hosts: Immunology of Vascular Infection and Vasoproliferation

Department of Medicine, Hospital of the University of Pennsylvania, 100 Centrex, Philadelphia, PA 19104, USA

Received 15 July 2011; Revised 27 September 2011; Accepted 29 September 2011

Academic Editor: Georgios Pappas

Copyright © 2012 Mosepele Mosepele et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Maurin and D. Raoult, “Bartonella infections: diagnostic and management issues,” Current Opinion in Infectious Diseases, vol. 11, no. 2, pp. 189–193, 1998. View at Google Scholar · View at Scopus
  2. B. B. Chomel, R. C. Abbott, R. W. Kasten et al., “Bartonella henselae prevalence in domestic cats in California: risk factors and association between bacteremia and antibody titers,” Journal of Clinical Microbiology, vol. 33, no. 9, pp. 2445–2450, 1995. View at Google Scholar
  3. J. E. Koehler, M. A. Sanchez, S. Tye et al., “Prevalence of Bartonella infection among human immunodeficiency virus-infected patients with fever,” Clinical Infectious Diseases, vol. 37, no. 4, pp. 559–566, 2003. View at Publisher · View at Google Scholar · View at PubMed
  4. D. Raoult, P. E. Fournier, M. Drancourt et al., “Diagnosis of 22 new cases of Bartonella endocarditis,” Annals of Internal Medicine, vol. 125, no. 8, pp. 646–652, 1996. View at Google Scholar
  5. P. E. Fournier, H. Lelievre, S. J. Eykyn et al., “Epidemiologic and clinical characteristics of Bartonella quintana and Bartonella henselae endocarditis: a study of 48 patients,” Medicine, vol. 80, no. 4, pp. 245–251, 2001. View at Publisher · View at Google Scholar
  6. K. J. Bown, M. Bennett, and M. Begon, “Flea-borne Bartonella grahamii and Bartonella taylorii in bank Voles,” Emerging Infectious Diseases, vol. 10, no. 4, pp. 684–687, 2004. View at Google Scholar
  7. J. L. Marié, P. É. Fournier, J. M. Rolain, S. Briolant, B. Davoust, and D. Raoult, “Molecular detection of Bartonella quintana, B. elizabethae, B. koehlerae, B. doshiae, B. taylorii, and Rickettsia felis in rodent fleas collected in Kabul, Afghanistan,” American Journal of Tropical Medicine and Hygiene, vol. 74, no. 3, pp. 436–439, 2006. View at Google Scholar
  8. B. B. Chomel, H. J. Boulouis, and E. B. Breitschwerdt, “Cat scratch disease and other zoonotic Bartonella infections,” Journal of the American Veterinary Medical Association, vol. 224, no. 8, pp. 1270–1279, 2004. View at Publisher · View at Google Scholar
  9. D. Raoult and V. Roux, “The body louse as a vector of reemerging human diseases,” Clinical Infectious Diseases, vol. 29, no. 4, pp. 888–911, 1999. View at Google Scholar · View at Scopus
  10. C. Maguiña and E. Gotuzzo, “Bartonellosis: new and old,” Infectious Disease Clinics of North America, vol. 14, no. 1, pp. 1–22, 2000. View at Google Scholar
  11. J. Koesling, T. Aebischer, C. Falch, R. Schülein, and C. Dehio, “Cutting edge: antibody-mediated cessation of hemotropic infection by the intraerythrocytic mouse pathogen Bartonella grahamii,” Journal of Immunology, vol. 167, no. 1, pp. 11–14, 2001. View at Google Scholar · View at Scopus
  12. O. Fuhrmann, M. Arvand, A. Göhler et al., “Bartonella henselae induces NF-κB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors,” Infection and Immunity, vol. 69, no. 8, pp. 5088–5097, 2001. View at Publisher · View at Google Scholar · View at PubMed
  13. P. Salvatore, A. Casamassimi, L. Sommese et al., “Detrimental effects of Bartonella henselae are counteracted by L-arginine and nitric oxide in human endothelial progenitor cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 27, pp. 9427–9432, 2008. View at Publisher · View at Google Scholar · View at PubMed
  14. C. Dehio, “Bartonella interactions with endothelial cells and erythrocytes,” Trends in Microbiology, vol. 9, no. 6, pp. 279–285, 2001. View at Publisher · View at Google Scholar
  15. M. W. Hornef, M. J. Wick, M. Rhen, and S. Normark, “Bacterial strategies for overcoming host innate and adaptive immune responses,” Nature Immunology, vol. 3, no. 11, pp. 1033–1040, 2002. View at Publisher · View at Google Scholar · View at PubMed
  16. E. Huarcaya, I. Best, J. Rodriguez-Tafur et al., “Cytokines and T-cell lymphocytes count in patients in the acute and chronic phases of Bartonella bacilliformis infection in an endemic area in Peru: a pilot study,” Revista do Instituto de Medicina Tropical de Sao Paulo, vol. 53, no. 3, pp. 149–154, 2011. View at Publisher · View at Google Scholar
  17. G. Matera, M. C. Liberto, A. Quirino et al., “Bartonella quintana lipopolysaccharide effects on leukocytes, CXC chemokines and apoptosis: a study on the human whole blood and a rat model,” International Immunopharmacology, vol. 3, no. 6, pp. 853–864, 2003. View at Publisher · View at Google Scholar · View at PubMed
  18. U. Zähringer, B. Lindner, Y. A. Knirel et al., “Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T,” Journal of Biological Chemistry, vol. 279, no. 20, pp. 21046–21054, 2004. View at Publisher · View at Google Scholar · View at PubMed
  19. C. Popa, S. Abdollahi-Roodsaz, L. A. B. Joosten et al., “Bartonella quintana lipopolysaccharide is a natural antagonist of toll-like receptor 4,” Infection and Immunity, vol. 75, no. 10, pp. 4831–4837, 2007. View at Publisher · View at Google Scholar · View at PubMed
  20. G. Matera, M. C. Liberto, L. A. B. Joosten et al., “The janus face of Bartonella quintana recognition by toll-like receptors (TLRs): a review,” European Cytokine Network, vol. 19, no. 3, pp. 113–118, 2008. View at Publisher · View at Google Scholar · View at PubMed
  21. P. A. Kyme, A. Haas, M. Schaller, A. Peschel, J. Iredell, and V. A. J. Kempf, “Unusual trafficking pattern of Bartonella henselae-containing vacuoles in macrophages and endothelial cells,” Cellular Microbiology, vol. 7, no. 7, pp. 1019–1034, 2005. View at Publisher · View at Google Scholar · View at PubMed
  22. W. Vermi, F. Facchetti, E. Riboldi et al., “Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma,” Blood, vol. 107, no. 2, pp. 454–462, 2006. View at Publisher · View at Google Scholar · View at PubMed
  23. S. Resto-Ruiz, A. Burgess, and B. E. Anderson, “The role of the host immune response in pathogenesis of Bartonella henselae,” DNA and Cell Biology, vol. 22, no. 6, pp. 431–440, 2003. View at Publisher · View at Google Scholar · View at PubMed
  24. A. M. McCord, S. I. Resto-Ruiz, and B. E. Anderson, “Autocrine role for interleukin-8 in Bartonella henselae-induced angiogenesis,” Infection and Immunity, vol. 74, no. 9, pp. 5185–5190, 2006. View at Publisher · View at Google Scholar · View at PubMed
  25. N. G. Papadopoulos, D. Gourgiotis, A. Bossios, A. Fretzayas, M. Moustaki, and T. Karpathios, “Circulating cytokines in patients with cat scratch disease,” Clinical Infectious Diseases, vol. 33, no. 6, pp. e54–e56, 2001. View at Google Scholar
  26. P. Glynn, R. Coakley, I. Kilgallen, N. Murphy, and S. O'Neill, “Circulating interleukin 6 and interleukin 10 in community acquired pneumonia,” Thorax, vol. 54, no. 1, pp. 51–55, 1999. View at Google Scholar
  27. T. Musso, R. Badolato, D. Ravarino et al., “Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response,” Infection and Immunity, vol. 69, no. 10, pp. 5974–5980, 2001. View at Publisher · View at Google Scholar · View at PubMed
  28. M. F. Minnick and J. M. Battisti, “Pestilence, persistence and pathogenicity: infection strategies of Bartonella,” Future Microbiology, vol. 4, no. 6, pp. 743–758, 2009. View at Publisher · View at Google Scholar · View at PubMed
  29. L. Chiaraviglio, S. Duong, D. A. Brown, R. J. Birtles, and J. E. Kirby, “An immunocompromised murine model of chronic Bartonella infection,” American Journal of Pathology, vol. 176, no. 6, pp. 2753–2763, 2010. View at Publisher · View at Google Scholar · View at PubMed
  30. R. Santos, O. Cardoso, P. Rodrigues et al., “Bacillary angiomatosis by Bartonella quintana in an HIV-infected patient,” Journal of the American Academy of Dermatology, vol. 42, no. 2, part 1, pp. 299–301, 2000. View at Google Scholar
  31. M. C. Schmid, F. Scheidegger, M. Dehio et al., “A translocated bacterial protein protects vascular endothelial cells from apoptosis,” PLoS Pathogens, vol. 2, no. 11, p. e115, 2006. View at Publisher · View at Google Scholar · View at PubMed
  32. C. C. Chang, Y. J. Chen, C. S. Tseng et al., “A comparative study of the interaction of Bartonella henselae strains with human endothelial cells,” Veterinary Microbiology, vol. 149, no. 1-2, pp. 147–156, 2011. View at Publisher · View at Google Scholar · View at PubMed
  33. R. Chetty and R. M. Sabaratnam, “Upper gastrointestinal bacillary angiomatosis causing hematemesis: a case report,” International Journal of Surgical Pathology, vol. 11, no. 3, pp. 241–244, 2003. View at Google Scholar · View at Scopus
  34. P. Hofman, H. Raspaldo, J. F. Michiels, G. Garnier, and J. Santini, “Bacillary angiomatosis of the oral cavity in AIDS. A differential diagnosis of mucosal Kaposi's sarcoma,” Revue de Stomatologie et de Chirurgie Maxillo-Faciale, vol. 94, no. 6, pp. 375–378, 1993. View at Google Scholar · View at Scopus
  35. S. L. de Blanc, R. Sambuelli, F. Femopase et al., “Bacillary angiomatosis affecting the oral cavity. Report of two cases and review,” Journal of Oral Pathology and Medicine, vol. 29, no. 2, pp. 91–96, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. S. R. Long, M. J. Whitfeld, C. Eades, J. E. Koehler, A. P. Korn, and C. J. Zaloudek, “Bacillary angiomatosis of the cervix and vulva in a patient with AIDS,” Obstetrics and Gynecology, vol. 88, no. 4, part 2, pp. 709–711, 1996. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Sala, B. Font, I. Sanfeliu, M. Quesada, I. Ponts, and F. Segura, “Bacillary angiomatosis caused by Bartonella quintana,” Annals of the New York Academy of Sciences, vol. 1063, pp. 302–307, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Bachelez, E. Oksenhendler, C. Lebbe et al., “Bacillary angiomatosis in HIV-infected patients: report of three cases with different clinical courses and identification of Rochalimaea quintana as the aetiological agent,” British Journal of Dermatology, vol. 133, no. 6, pp. 983–989, 1995. View at Publisher · View at Google Scholar
  39. B. Lienhardt, S. Irani, A. Gaspert, D. Weishaupt, and A. Boehler, “Disseminated infection with Bartonella henselae in a lung transplant recipient,” Journal of Heart and Lung Transplantation, vol. 28, no. 7, pp. 736–739, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. V. R. Dharnidharka, G. A. Richard, R. E. Neiberger, and R. S. Fennell III, “Cat scratch disease and acute rejection after pediatric renal transplantation,” Pediatric Transplantation, vol. 6, no. 4, pp. 327–331, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. K. R. Thudi, J. T. Kreikemeier, N. J. Phillips, P. R. Salvalaggio, D. J. Kennedy, and P. H. Hayashi, “Cat scratch disease causing hepatic masses after liver transplant,” Liver International, vol. 27, no. 1, pp. 145–148, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. A. Humar and I. Salit, “Disseminated Bartonella infection with granulomatous hepatitis in a liver transplant recipient,” Liver Transplantation and Surgery, vol. 5, no. 3, pp. 249–251, 1999. View at Google Scholar · View at Scopus
  43. H. Bonatti, J. Mendez, I. Guerrero et al., “Disseminated Bartonella infection following liver transplantation,” Transplant International, vol. 19, no. 8, pp. 683–687, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. A. M. Apalsch, B. Nour, and R. Jaffe, “Systemic cat-scratch disease in a pediatric liver transplant recipient and review of the literature,” Pediatric Infectious Disease Journal, vol. 12, no. 9, pp. 769–774, 1993. View at Google Scholar · View at Scopus
  45. D. H. Spach, A. S. Kanter, M. J. Dougherty et al., “Bartonella (Rochalimaea) quintana bacteremia in inner-city patients with chronic alcoholism,” The New England Journal of Medicine, vol. 332, no. 7, pp. 424–428, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  46. M. Drancourt, J. L. Mainardi, P. Brouqui et al., “Bartonella (Rochalimaea) quintana endocarditis in three homeless men,” The New England Journal of Medicine, vol. 332, no. 7, pp. 419–423, 1995. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  47. P. Houpikian and D. Raoult, “Blood culture-negative endocarditis in a reference center: etiologic diagnosis of 348 cases,” Medicine, vol. 84, no. 3, pp. 162–173, 2005. View at Publisher · View at Google Scholar · View at Scopus