Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 635451, 19 pages
http://dx.doi.org/10.1155/2012/635451
Review Article

Characteristics of Suppressor Macrophages Induced by Mycobacterial and Protozoal Infections in relation to Alternatively Activated M2 Macrophages

1Department of Microbiology and Immunology, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
2Department of Nutritional Sciences, Faculty of Home Economics, Yasuda Women’s University, Hiroshima 731-0153, Japan

Received 21 December 2011; Revised 22 February 2012; Accepted 23 February 2012

Academic Editor: Nejat Egilmez

Copyright © 2012 Haruaki Tomioka et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Tiruviluamala and L. B. Reichman, “Tuberculosis,” Annual Review of Public Health, vol. 23, pp. 403–426, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. T. R. Frieden, T. R. Sterling, S. S. Munsiff, C. J. Watt, and C. Dye, “Tuberculosis,” The Lancet, vol. 362, no. 9387, pp. 887–899, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Zahorka, R. Merkle, and C. K. Bodiang, Current Issues in Tuberculosis Control, Swiss Tropical Institute, 2004.
  4. M. H. Aliyu and H. M. Salihu, “Tuberculosis and HIV disease: two decades of a dual epidemic,” Wiener Klinische Wochenschrift, vol. 115, no. 19-20, pp. 685–697, 2003. View at Google Scholar · View at Scopus
  5. M. D. Iseman, “Treatment and implications of multidrug-resistant tuberculosis for the 21st century,” Chemotherapy, vol. 45, Supplement 2, pp. 34–40, 1999. View at Google Scholar · View at Scopus
  6. R. C. Goldman, K. V. Plumley, and B. E. Laughon, “The evolution of extensively drug resistant tuberculosis (XDR-TB): history, status and issues for global control,” Infectious Disorders, vol. 7, no. 2, pp. 73–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. R. J. O'Brien and A. A. Vernon, “New tuberculosis drug development: how can we do better?” American Journal of Respiratory and Critical Care Medicine, vol. 157, no. 6 I, pp. 1705–1707, 1998. View at Google Scholar · View at Scopus
  8. D. C. Blanc, P. Nunn, and K. Duncan, “Incentives and disincentives for new anti-tuberculous drug development. Situational analysis,” World Health Organization, vol. 2000, pp. 1–59, 2000. View at Google Scholar
  9. J. Chan and J. Flynn, “The immunological aspects of latency in tuberculosis,” Clinical Immunology, vol. 110, no. 1, pp. 2–12, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. J. E. Gomez and J. D. McKinney, “M. tuberculosis persistence, latency, and drug tolerance,” Tuberculosis, vol. 84, no. 1-2, pp. 29–44, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. E. K. Jo, J. K. Park, and H. M. Dockrell, “Dynamics of cytokine generation in patients with active pulmonary tuberculosis,” Current Opinion in Infectious Diseases, vol. 16, no. 3, pp. 205–210, 2003. View at Google Scholar · View at Scopus
  12. H. Tomioka, Y. Tatano, C. Sano, and T. Shimizu, “Development of new antituberculous drugs based on bacterial virulence factors interfering with host cytokine networks,” Journal of Infection and Chemotherapy, vol. 17, pp. 302–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Dlugovitzky, A. Torres-Morales, L. Rateni et al., “Circulating profile of Th1 and Th2 cytokines in tuberculosis patients with different degrees of pulmonary involvement,” FEMS Immunology and Medical Microbiology, vol. 18, no. 3, pp. 203–207, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. L. E. Bermudez, D. Wagner, and D. Sosnowska, “Mechanisms of Mycobacterium avium pathogenesis,” ArcHIVum Immunologiae et Therapiae Experimentalis, vol. 48, no. 6, pp. 521–527, 2000. View at Google Scholar · View at Scopus
  15. B. Raju, Y. Hoshino, I. Belitskaya-Lévy et al., “Gene expression profiles of bronchoalveolar cells in pulmonary TB,” Tuberculosis, vol. 88, no. 1, pp. 39–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Schreiber, S. Ehlers, L. Heitmann et al., “Autocrine IL-10 induces hallmarks of alternative activation in macrophages and suppresses antituberculosis effector mechanisms without compromising T cell immunity,” Journal of Immunology, vol. 183, no. 2, pp. 1301–1312, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Lugo-Villarino, C. Verollet, I. maridonneau-Parini, and O. Neyrolles, “Macrophage polirazation: convergence point targeted by Mycobacterium tuberculosis and HIV,” Frontiers in Immunology, vol. 2, article 43, pp. 1–7, 2011. View at Publisher · View at Google Scholar
  18. M. Benoit, B. Desnues, and J. L. Mege, “Macrophage polarization in bacterial infections,” Journal of Immunology, vol. 181, no. 6, pp. 3733–3739, 2008. View at Google Scholar · View at Scopus
  19. P. J. Murray and T. A. Wynn, “Protective and pathogenic functions of macrophage subsets,” Nature Reviews Immunology, vol. 11, pp. 723–737, 2011. View at Google Scholar
  20. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Katakura, M. Miyazaki, M. Kobayashi, D. N. Herndon, and F. Suzuki, “CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages,” Journal of Immunology, vol. 172, no. 3, pp. 1407–1413, 2004. View at Google Scholar · View at Scopus
  23. P. J. Murray and T. A. Wynn, “Obstacles and opportunities for understanding macrophage polarization,” Journal of Leukocyte Biology, vol. 89, no. 4, pp. 557–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, “Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes,” Trends in Immunology, vol. 23, no. 11, pp. 549–555, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Mantovani and A. Sica, “Macrophages, innate immunity and cancer: balance, tolerance, and diversity,” Current Opinion in Immunology, vol. 22, no. 2, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Stein, S. Keshav, N. Harris, and S. Gordon, “Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation,” Journal of Experimental Medicine, vol. 176, no. 1, pp. 287–292, 1992. View at Publisher · View at Google Scholar · View at Scopus
  27. M. G. Nair, D. W. Cochrane, and J. E. Allen, “Macrophages in chronic type 2 inflammation have a novel phenotype characterized by the abundant expression of Ym1 and Fizz1 that can be partly replicated in vitro,” Immunology Letters, vol. 85, no. 2, pp. 173–180, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. S. Gerber and D. M. Mosser, “Reversing lipopolysaccharide toxicity by ligating the macrophage Fcγ receptors,” Journal of Immunology, vol. 166, no. 11, pp. 6861–6868, 2001. View at Google Scholar · View at Scopus
  29. J. P. Edwards, X. Zhang, K. A. Frauwirth, and D. M. Mosser, “Biochemical and functional characterization of three activated macrophage populations,” Journal of Leukocyte Biology, vol. 80, no. 6, pp. 1298–1307, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. D. M. Mosser and J. P. Edwards, “Exploring the full spectrum of macrophage activation,” Nature Reviews Immunology, vol. 8, no. 12, pp. 958–969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. C. H. Fong, M. Bebien, A. Didierlaurent et al., “An antiinflammatory role for IKKβ through the inhibition of “classical” macrophage activation,” Journal of Experimental Medicine, vol. 205, no. 6, pp. 1269–1276, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Krausgruber, K. Blazek, T. Smallie et al., “IRF5 promotes inflammatory macrophage polarization and Th1-Th17 responses,” Nature Immunology, vol. 12, no. 3, pp. 231–238, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Cao, J. Liu, M. Chesi et al., “Differential regulation of IL-12 and IL-10 gene expression in macrophages by the basic leucine zipper transcription factor c-MAF fibrosarcoma,” Journal of Immunology, vol. 169, no. 10, pp. 5715–5725, 2002. View at Google Scholar · View at Scopus
  34. A. C. MacKinnon, S. L. Farnworth, P. S. Hodkinson et al., “Regulation of alternative macrophage activation by galectin-3,” Journal of Immunology, vol. 180, no. 4, pp. 2650–2658, 2008. View at Google Scholar · View at Scopus
  35. F. A. Verreck, T. de Boer, D. M. Langenberg et al., “Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 13, pp. 4560–4565, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, “Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression,” Journal of Immunology, vol. 177, no. 10, pp. 7303–7311, 2006. View at Google Scholar · View at Scopus
  37. F. O. Martinez, “Regulators of macrophage activation,” European Journal of Immunology, vol. 41, no. 6, pp. 1531–1534, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Novak, S. Dabelic, and J. Dumic, “Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages,” Biochimica et Biophysica Acta. In press. View at Publisher · View at Google Scholar
  39. G. Raes, R. van den Bergh, P. de Baetselier et al., “Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells,” Journal of Immunology, vol. 174, no. 11, pp. 6561–6562, 2005. View at Google Scholar · View at Scopus
  40. S. E. Macatonia, C. S. Hsieh, K. M. Murphy, and A. O'Garra, “Dendritic cells and macrophages are required for Th1 development of CD4+ T cells from αβ TCR transgenic mice: IL-12 substitution for macrophages to stimulate IFN-γ production is IFN-γ-dependent,” International Immunology, vol. 5, no. 9, pp. 1119–1128, 1993. View at Google Scholar · View at Scopus
  41. G. L. Stritesky, N. Yeh, and M. H. Kaplan, “IL-23 promotes maintenance but not commitment to the Th17 lineage,” Journal of Immunology, vol. 181, no. 9, pp. 5948–5955, 2008. View at Google Scholar · View at Scopus
  42. A. B. Roberts, M. B. Sporn, R. K. Assoian et al., “Transforming growth factor type ß: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 12, pp. 4167–4171, 1986. View at Google Scholar · View at Scopus
  43. L. Barron and T. A. Wynn, “Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages,” American Journal of Physiology, vol. 300, no. 5, pp. G723–G728, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. J. C. Boldrick, A. A. Alizadeh, M. Diehn et al., “Stereotyped and specific gene expression programs in human innate immune responses to bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 2, pp. 972–977, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. L. Mège, V. Mehraj, and C. Capo, “Macrophage polarization and bacterial infections,” Current Opinion in Infectious Diseases, vol. 24, no. 3, pp. 230–234, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. E. F. Redente, D. M. Higgins, L. D. Dwyer-Nield, I. M. Orme, M. Gonzalez-Juarrero, and A. M. Malkinson, “Differential polarization of alveolar macrophages and bone marrow-derived monocytes following chemically and pathogen-induced chronic lung inflammation,” Journal of Leukocyte Biology, vol. 88, no. 1, pp. 159–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Ito, M. Schaller, C. M. Hogaboam, T. J. Standiford, S. W. Chensue, and S. L. Kunkel, “TLR9 activation is a key event for the maintenance of a mycobacterial antigen-elicited pulmonary granulomatous response,” European Journal of Immunology, vol. 37, no. 10, pp. 2847–2855, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. I. F. Charo, “Macrophage polarization and insulin resistance: PPARγ in control,” Cell Metabolism, vol. 6, no. 2, pp. 96–98, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Montoya, D. Cruz, R. M. B. Teles et al., “Divergence of macrophage phagocytic and antimicrobial programs in leprosy,” Cell Host and Microbe, vol. 6, no. 4, pp. 343–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. X. Liao, N. Sharma, F. Kapadia et al., “Krüppel-like factor 4 regulates macrophage polarization,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2736–2749, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. M. V. Rajaram, M. N. Brooks, J. D. Morris, J. B. Torrelles, A. K. Azad, and L. S. Schlesinger, “Mycobacterium tuberculosis activates human macrophage peroxisome proliferator-activated receptor γ linking mannose receptor recognition to regulation of immune responses,” Journal of Immunology, vol. 185, no. 2, pp. 929–942, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. François, R. Romieu-Mourez, M. Li, and J. Galipeau, “Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation,” Molecular Therapy, vol. 20, no. 1, pp. 187–-195, 2012. View at Publisher · View at Google Scholar
  53. J. E. Qualls, G. Neale, A. M. Smith et al., “Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling,” Science Signaling, vol. 3, no. 135, article ra62, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Medot-Pirenne, M. J. Heilman, M. Saxena, P. E. McDermott, and C. D. Mills, “Augmentation of an antitumor CTL response in vivo by inhibition of suppressor macrophage nitric oxide,” Journal of Immunology, vol. 163, no. 11, pp. 5877–5882, 1999. View at Google Scholar · View at Scopus
  55. M. R. Smith, T. J. Standiford, and R. C. Reddy, “PPARs in alveolar macrophage biology,” PPAR Research, vol. 2007, Article ID 23812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Spiteri and L. W. Poulter, “Characterization of immune inducer and suppressor macrophages from the normal human lung,” Clinical and Experimental Immunology, vol. 83, no. 1, pp. 157–162, 1991. View at Google Scholar · View at Scopus
  57. J. W. Upham, D. H. Strickland, B. W. S. Robinson, and P. G. Holt, “Selective inhibition of T cell proliferation but not expression of effector function by human alveolar macrophages,” Thorax, vol. 52, no. 9, pp. 786–795, 1997. View at Google Scholar · View at Scopus
  58. X. Zhang and D. N. McMurray, “Suppression of lymphoproliferation by alveolar macrophages in the guinea pig,” Tubercle and Lung Disease, vol. 79, no. 2, pp. 119–126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. E. A. Rich, C. Cooper, Z. Toossi et al., “Requirement for cell-to-cell contact for the immunosuppressive activity of human alveolar macrophages,” American Journal of Respiratory Cell and Molecular Biology, vol. 4, no. 3, pp. 287–294, 1991. View at Google Scholar · View at Scopus
  60. T. Kawabe, K. I. Isobe, Y. Hasegawa, I. Nakashima, and K. Shimokata, “Immunosuppressive activity induced by nitric oxide in culture supernatant of activated rat alveolar macrophages,” Immunology, vol. 76, no. 1, pp. 72–78, 1992. View at Google Scholar · View at Scopus
  61. M. G. Steele and H. B. Herscowitz, “Suppression of murine IgM, IgG, IgA and IgE antibody responses by alveolar macrophages,” Immunology, vol. 80, no. 1, pp. 62–67, 1993. View at Google Scholar · View at Scopus
  62. H. Kobayashi, M. Kobayashi, T. A. Heming, A. Bidani, R. B. Pollard, and F. Suzuki, “Cytokine production by rabbit alveolar macrophages: differences between activated and suppressor cell phenotypes,” Immunology Letters, vol. 69, no. 3, pp. 339–346, 1999. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Arikawa, N. Saita, S. Oomizu et al., “Galectin-9 expands immunosuppressive macrophages to ameliorate T-cell-mediated lung inflammation,” European Journal of Immunology, vol. 40, no. 2, pp. 548–558, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. J. N. Flynn and M. Sileghem, “The role of the macrophage in induction of immunosuppression in Trypanosoma congolense-infected cattle,” Immunology, vol. 74, no. 2, pp. 310–316, 1991. View at Google Scholar · View at Scopus
  65. K. W. Schleifer and J. M. Mansfield, “Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins,” Journal of Immunology, vol. 151, no. 10, pp. 5492–5503, 1993. View at Google Scholar · View at Scopus
  66. J. M. Sternberg and N. A. Mabbott, “Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-γ are synergistic inducers of nitric oxide synthase,” European Journal of Immunology, vol. 26, no. 3, pp. 539–543, 1996. View at Publisher · View at Google Scholar · View at Scopus
  67. I. A. Khan, T. Matsuura, and L. H. Kasper, “IL-10 mediates immunosuppression following primary infection with toxoplasma gondii in mice,” Parasite Immunology, vol. 17, no. 4, pp. 185–195, 1995. View at Google Scholar · View at Scopus
  68. J. E. Allen and A. S. Macdonald, “Profound suppression of cellular proliferation mediated by the secretions of nematodes,” Parasite Immunology, vol. 20, no. 5, pp. 241–247, 1998. View at Publisher · View at Google Scholar · View at Scopus
  69. J. E. Allen, R. A. Lawrence, and R. M. Maizels, “APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production,” International Immunology, vol. 8, no. 1, pp. 143–151, 1996. View at Publisher · View at Google Scholar · View at Scopus
  70. P. M. Preston, M. Darghouth, N. R. Boulter et al., “A dual role for immunosuppressor mechanisms in infection with Theileria annulata: well-regulated suppressor macrophages help in recovery from infection; profound immunosuppression promotes non-healing disease,” Parasitology Research, vol. 88, no. 6, pp. 522–534, 2002. View at Publisher · View at Google Scholar · View at Scopus
  71. A. S. MacDonald, R. M. Maizels, R. A. Lawrence, I. Dransfield, and J. E. Allen, “Requirement for in vivo production of IL-4, but not IL-10, in the induction of proliferative suppression by filarial parasites,” Journal of Immunology, vol. 160, no. 8, pp. 4124–4132, 1998. View at Google Scholar · View at Scopus
  72. O. Atochina, T. Daly-Engel, D. Piskorska, E. McGuire, and D. A. Harn, “A schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Gr1+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism,” Journal of Immunology, vol. 167, no. 8, pp. 4293–4302, 2001. View at Google Scholar · View at Scopus
  73. N. Gironès, M. A. Valero, M. A. García-Bodelón et al., “Immune suppression in advanced chronic fascioliasis: an experimental study in a rat model,” Journal of Infectious Diseases, vol. 195, no. 10, pp. 1504–1512, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. J. A. Potian, W. Rafi, K. Bhatt, A. McBride, W. C. Gause, and P. Salgame, “Preexisting helminth infection induces inhibition of innate pulmonary anti-tuberculosis defense by engaging the IL-4 receptor pathway,” Journal of Experimental Medicine, vol. 208, no. 9, pp. 1863–1874, 2011. View at Google Scholar
  75. S. M. Hingley-Wilson, L. M. Sly, N. E. Reiner et al., “The immunobiology of the mycobacterial infected macrophage,” Modern Aspects of Immunobiology, vol. 1, pp. 96–101, 2000. View at Google Scholar
  76. B. Spellberg and J. E. Edwards, “Type 1/type 2 immunity in infectious diseases,” Clinical Infectious Diseases, vol. 32, no. 1, pp. 76–102, 2001. View at Publisher · View at Google Scholar · View at Scopus
  77. R. J. North and Y. J. Jung, “Immunity to tuberculosis,” Annual Review of Immunology, vol. 22, pp. 599–623, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. A. M. Cooper and S. A. Khader, “The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis,” Immunological Reviews, vol. 226, no. 1, pp. 191–204, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A. M. Cooper, “T cells in mycobacterial infection and disease,” Current Opinion in Immunology, vol. 21, no. 4, pp. 378–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. R. van Crevel, T. H. M. Ottenhoff, and J. W. M. van der Meer, “Innate immunity to Mycobacterium tuberculosis,” Clinical Microbiology Reviews, vol. 15, no. 2, pp. 294–309, 2002. View at Publisher · View at Google Scholar · View at Scopus
  81. B. Wu, C. Huang, M. Kato-Maeda et al., “IL-9 is associated with an impaired Th1 immune response in patients with tuberculosis,” Clinical Immunology, vol. 126, no. 2, pp. 202–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. D. Edwards and C. H. Kirkpatrick, “The immunology of mycobacterial diseases,” American Review of Respiratory Disease, vol. 134, no. 5, pp. 1062–1071, 1986. View at Google Scholar · View at Scopus
  83. J. J. Ellner, “Suppressor adherent cells in human tuberculosis,” Journal of Immunology, vol. 121, no. 6, pp. 2573–2579, 1978. View at Google Scholar · View at Scopus
  84. G. R. Klimpel and C. S. Henney, “BCG-induced suppressor cells. I. Demonstration of a macrophage-like suppressor cell that inhibits cytotoxic T cell generation in vitro,” Journal of Immunology, vol. 120, no. 2, pp. 563–569, 1978. View at Google Scholar · View at Scopus
  85. K. N. Couper, D. G. Blount, and E. M. Riley, “IL-10: the master regulator of immunity to infection,” Journal of Immunology, vol. 180, no. 9, pp. 5771–5777, 2008. View at Google Scholar · View at Scopus
  86. M. O. Li, Y. Y. Wan, S. Sanjabi, A. K. L. Robertson, and R. A. Flavell, “Transforming growth factor-β regulation of immune responses,” Annual Review of Immunology, vol. 24, pp. 99–146, 2006. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Tomioka, H. Saito, and Y. Yamada, “Characteristics of immunosuppressive macrophages induced in spleen cells by Mycobacterium avium complex infections in mice,” Journal of General Microbiology, vol. 136, no. 5, pp. 965–973, 1990. View at Google Scholar · View at Scopus
  88. H. Tomioka, H. Saito, and K. Sato, “Characteristics of immunosuppressive macrophages induced in host spleen cells by Mycobacterium avium complex and Mycobacterium tuberculosis infections in mice,” Microbiology and Immunology, vol. 34, no. 3, pp. 283–297, 1990. View at Google Scholar · View at Scopus
  89. H. Tomioka and H. Saito, “Characterization of immunosuppressive functions of murine peritoneal macrophages induced with various agents,” Journal of Leukocyte Biology, vol. 51, no. 1, pp. 24–31, 1992. View at Google Scholar · View at Scopus
  90. D. Boraschi, D. Soldateschi, and A. Tagliabue, “Macrophage activation by interferon: dissociation between tumoricidal capacity and suppressive activity,” European Journal of Immunology, vol. 12, no. 4, pp. 320–326, 1982. View at Google Scholar · View at Scopus
  91. H. Tomioka, W. W. Maw, K. Sato, and H. Saito, “The role of tumour necrosis factor-α in combination with interferon-γ or interleukin-1 in the induction of immunosuppressive macrophages because of Mycobacterium avium complex infection,” Immunology, vol. 88, no. 1, pp. 61–67, 1996. View at Google Scholar · View at Scopus
  92. Y. Tatano, T. Shimizu, and H. Tomioka, “Properties of immunosuppressive macrophages generated by Mycobacterium intracellulare infection in M. intracellulare-susceptible and resistant mice,” New Microbiologica, vol. 33, no. 1, pp. 87–91, 2010. View at Google Scholar · View at Scopus
  93. D. Gosselin, R. Turcotte, and S. Lemieux, “Phenotypic characterization of two cell populations involved in the acquisition of suppressor activity by cultured spleen cells from Mycobacterium lepraemurium-infected mice,” Clinical and Experimental Immunology, vol. 102, no. 3, pp. 515–522, 1995. View at Google Scholar · View at Scopus
  94. D. Gosselin, R. Turcotte, and S. Lemieux, “Cyclophosphamide treatment antagonizes the in vitro development of Mycobacterium lepraemurium-induced suppressor cell precursors,” Clinical and Experimental Immunology, vol. 89, no. 2, pp. 185–191, 1992. View at Google Scholar · View at Scopus
  95. D. Gosselin, R. Turcotte, and S. Lemieux, “Cellular target of in vitro-induced suppressor cells derived from the spleen of Mycobacterium lepraemurium-infected mice and role of IFN-γ in their development,” Journal of Leukocyte Biology, vol. 57, no. 1, pp. 122–128, 1995. View at Google Scholar · View at Scopus
  96. H. Tomioka, K. Sato, W. W. Maw, and H. Saito, “The role of tumor necrosis factor, interferon-γ, transforming growth factor-β, and nitric oxide in the expression of immunosuppressive functions of splenic macrophages induced by Mycobacterium avium complex infection,” Journal of Leukocyte Biology, vol. 58, no. 6, pp. 704–712, 1995. View at Google Scholar · View at Scopus
  97. H. Tomioka, T. Kishimoto, and W. W. Maw, “Phospholipids and reactive nitrogen intermediates collaborate in expression of the T cell mitogenesis-inhibitory activity of immunosuppressive macrophages induced in mycobacterial infection,” Clinical and Experimental Immunology, vol. 103, no. 2, pp. 219–225, 1996. View at Google Scholar · View at Scopus
  98. W. W. Maw, T. Shimizu, K. Sato, and H. Tomioka, “Further study on the roles of the effector molecules of immunosuppressive macrophages induced by mycobacterial infection in expression of their suppressor function against mitogen-stimulated T cell proliferation,” Clinical and Experimental Immunology, vol. 108, no. 1, pp. 26–33, 1997. View at Google Scholar · View at Scopus
  99. S. Cai, T. Shimizu, and H. Tomioka, “Comparative studies on the roles of mediator molecules in expression of the suppressor activity of Mycobacterium avium complex-induced immunosuppressive macrophages against T cell and B cell mitogenic responses,” Clinical and Experimental Immunology, vol. 143, no. 3, pp. 560–571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. K. Ogasawara, H. Tomioka, T. Shimizu, C. Sano, H. Kawauchi, and K. Sato, “Profiles of cell-to-cell interaction of Mycobacterium intracellulare-induced immunosuppressive macrophages with target T cells in terms of suppressor signal transmission,” Clinical and Experimental Immunology, vol. 129, no. 2, pp. 272–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. T. L. Schauble, W. H. Boom, C. K. Finegan, and E. A. Rich, “Characterization of suppressor function of human alveolar macrophages for T lymphocyte responses to phytohemagglutinin: cellular selectivity, reversibility, and early events in T cell activation,” American Journal of Respiratory Cell and Molecular Biology, vol. 8, no. 1, pp. 89–97, 1993. View at Google Scholar · View at Scopus
  102. S. J. Martin, C. P. M. Reutelingsperger, A. J. McGahon et al., “Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl,” Journal of Experimental Medicine, vol. 182, no. 5, pp. 1545–1556, 1995. View at Publisher · View at Google Scholar · View at Scopus
  103. T. Shimizu, C. Sano, and H. Tomioka, “The role of B7 molecules in the cell contact-mediated suppression of T cell mitogenesis by immunosuppressive macrophages induced with mycobacterial infection,” Clinical and Experimental Immunology, vol. 135, no. 3, pp. 373–379, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. J. E. Smith-Garvin, G. A. Koretzky, and M. S. Jordan, “T cell activation,” Annual Review of Immunology, vol. 27, pp. 591–619, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. T. Nakayama and M. Yamashita, “The TCR-mediated signaling pathways that control the direction of helper T cell differentiation,” Seminars in Immunology, vol. 22, no. 5, pp. 303–309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  106. Y. Suzuki, C. Demoliere, D. Kitamura, H. Takeshita, U. Deuschle, and T. Watanabe, “HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases,” Journal of Immunology, vol. 158, no. 6, pp. 2736–2744, 1997. View at Google Scholar · View at Scopus
  107. S. Deindl, T. A. Kadlecek, T. Brdicka, X. Cao, A. Weiss, and J. Kuriyan, “Structural basis for the inhibition of tyrosine kinase activity of ZAP-70,” Cell, vol. 129, no. 4, pp. 735–746, 2007. View at Publisher · View at Google Scholar · View at Scopus
  108. E. K. Barber, J. D. Dasgupta, S. F. Schlossman, J. M. Trevillyan, and C. E. Rudd, “The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 9, pp. 3277–3281, 1989. View at Google Scholar · View at Scopus
  109. A. Tamir, Y. Granot, and N. Isakov, “Inhibition of T lymphocyte activation by cAMP is associated with down-regulation of two parallel mitogen-activated protein kinase pathways, the extracellular signal-related kinase and c-Jun N-terminal kinase,” Journal of Immunology, vol. 157, no. 4, pp. 1514–1522, 1996. View at Google Scholar · View at Scopus
  110. C. Ramstad, V. Sundvold, H. K. Johansen, and T. Lea, “cAMP-dependent protein kinase (PKA) inhibits T cell activation by phosphorylating ser-43 of raf-1 in the MAPK/ERK pathway,” Cellular Signalling, vol. 12, no. 8, pp. 557–563, 2000. View at Publisher · View at Google Scholar · View at Scopus
  111. D. A. Lammas, C. Stober, C. J. Harvey, N. Kendrick, S. Panchalingam, and D. S. Kumararatne, “ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors,” Immunity, vol. 7, no. 3, pp. 433–444, 1997. View at Publisher · View at Google Scholar · View at Scopus
  112. D. J. Kusner and J. Adams, “ATP-induced killing of virulent Mycobacterium tuberculosis within human macrophages requires phospholipase D,” Journal of Immunology, vol. 164, no. 1, pp. 379–388, 2000. View at Google Scholar · View at Scopus
  113. A. A. Filardy, D. R. Pires, M. P. Nunes et al., “Proinflammatory clearance of apoptotic neutrophils induces an IL-12lowIL-10high regulatory phenotype in macrophages,” Journal of Immunology, vol. 185, no. 4, pp. 2044–2050, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. G. W. Wang, B. K. Huang, and L. P. Qin, “The genus Broussonetia: a review of its phytochemistry and pharmacology,” Phytotherapy Research, vol. 26, no. 1, pp. 1–10, 2012. View at Google Scholar
  115. G. W. Amsden, “Anti-inflammatory effects of macrolides—an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions?” Journal of Antimicrobial Chemotherapy, vol. 55, no. 1, pp. 10–21, 2005. View at Publisher · View at Google Scholar · View at Scopus