Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2012, Article ID 974067, 11 pages
http://dx.doi.org/10.1155/2012/974067
Clinical Study

Immune Modulation in Primary Vaccinia virus Zoonotic Human Infections

1Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
2Instituto René Rachou (IRR), Fundação Oswaldo Cruz, Avenida Augusto de Lima 1715, 30190-002 Belo Horizonte, MG, Brazil
3Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
4Departamento de Doenças Infecciosas e Parasitárias, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avendia Brigadeiro Faria Lima 5416, 15090-000 São José do Rio Preto, SP, Brazil

Received 12 July 2011; Revised 16 September 2011; Accepted 17 September 2011

Academic Editor: Alfonso J. Rodriguez-Morales

Copyright © 2012 Juliana Assis Silva Gomes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Blendon, C. M. DesRoches, J. M. Benson, M. J. Herrmann, K. Taylor-Clark, and K. J. Weldon, “The public and the smallpox threat,” The New England Journal of Medicine, vol. 348, no. 5, pp. 426–432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. E. Frey and R. B. Belshe, “Poxvirus zoonoses—putting pocks into context,” The New England Journal of Medicine, vol. 350, no. 4, pp. 324–327, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Essbauer, M. Pfeffer, and H. Meyer, “Zoonotic poxviruses,” Veterinary Microbiology, vol. 140, no. 3-4, pp. 229–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. J. Sejvar, Y. Chowdary, M. Schomogyi et al., “Human monkeypox infection: a family cluster in the Midwestern United States,” Journal of Infectious Diseases, vol. 190, no. 10, pp. 1833–1840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. G. De Souza Trindade, F. G. Da Fonseca, J. T. Marques et al., “Araçatuba virus: a vaccinialike virus associated with infection in humans and cattle,” Emerging Infectious Diseases, vol. 9, no. 2, pp. 155–160, 2003. View at Google Scholar · View at Scopus
  6. J. A. Leite, B. P. Drumond, G. S. Trindade et al., “Passatempo virus, a vaccinia virus strain, Brazil,” Emerging Infectious Diseases, vol. 11, no. 12, pp. 1935–1938, 2005. View at Google Scholar · View at Scopus
  7. G. S. Trindade, Z. I. P. Lobato, B. P. Drumond et al., “Isolation of two Vaccinia virus strains from a single bovine vaccinia outbreak in rural area from Brazil: implications on the emergence of zoonotic orthopoxviruses,” American Journal of Tropical Medicine and Hygiene, vol. 75, no. 3, pp. 486–490, 2006. View at Google Scholar · View at Scopus
  8. G. S. Trindade, M. I. C. Guedes, B. P. Drumond et al., “Zoonotic vaccinia virus: clinical and immunological characteristics in a naturally infected patient,” Clinical Infectious Diseases, vol. 48, no. 3, pp. e37–e40, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. B. E. F. Mota, G. S. Trindade, T. C. Diniz et al., “Seroprevalence of orthopoxvirus in an Amazonian rural village, Acre, Brazil,” Archives of Virology, vol. 155, no. 7, pp. 1139–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. J. S. Abrahão, A. T. Silva-Fernandes, L. S. Lima et al., “Vaccinia virus infection in monkeys, Brazilian Amazon,” Emerging Infectious Diseases, vol. 16, no. 6, pp. 976–979, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. R. K. Singh, M. Hosamani, V. Balamurugan, V. Bhanuprakash, T. J. Rasool, and M. P. Yadav, “Buffalopox: an emerging and re-emerging zoonosis,” Animal Health Research Reviews, vol. 8, no. 1, pp. 105–114, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Venkatesan, V. Balamurugan, M. Prabhu et al., “Emerging and re-emerging zoonotic buffalopox infection: a severe outbreak in Kolhapur (Maharashtra), India,” Veterinaria Italiana, vol. 46, no. 4, pp. 439–448, 2010. View at Google Scholar · View at Scopus
  13. R. M. Vorou, V. G. Papavassiliou, and I. N. Pierroutsakos, “Cowpox virus infection: an emerging health threat,” Current Opinion in Infectious Diseases, vol. 21, no. 2, pp. 153–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Hammarlund, M. W. Lewis, S. G. Hansen et al., “Duration of antiviral immunity after smallpox vaccination,” Nature Medicine, vol. 9, no. 9, pp. 1131–1137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. C. Tscharke, G. Karupiah, J. Zhou et al., “Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 95–104, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Pütz, C. M. Midgley, M. Law, and G. L. Smith, “Quantification of antibody responses against multiple antigens of the two infectious forms of Vaccinia virus provides a benchmark for smallpox vaccination,” Nature Medicine, vol. 12, no. 11, pp. 1310–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. I. J. Amanna, M. K. Slifka, and S. Crotty, “Immunity and immunological memory following smallpox vaccination,” Immunological Reviews, vol. 211, pp. 320–337, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. L. Precopio, M. R. Betts, J. Parrino et al., “Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1405–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Hammarlund, A. Dasgupta, C. Pinilla, P. Norori, K. Früh, and M. K. Slifka, “Monkeypox virus evades antiviral CD4+ and CD8+ T cell responses by suppressing cognate T cell activation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14567–14572, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. R. B. Kennedy, I. G. Ovsyannikova, R. M. Jacobson, and G. A. Poland, “The immunology of smallpox vaccines,” Current Opinion in Immunology, vol. 21, no. 3, pp. 314–320, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. I. M. Belyakov, P. Earl, A. Dzutsev et al., “Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 16, pp. 9458–9463, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Edghill-Smith, H. Golding, J. Manischewitz et al., “Smallpox vaccine-induced antibodies are necessary and sufficient for protection against monkeypox virus,” Nature Medicine, vol. 11, no. 7, pp. 740–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. V. Panchanathan, G. Chaudhri, and G. Karupiah, “Antiviral protection following immunization correlates with humoral but not cell-mediated immunity,” Immunology and Cell Biology, vol. 88, no. 4, pp. 461–467, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. Lauterbach, R. Kassub, J. Pätzold et al., “Immune requirements of post-exposure immunization with modified vaccinia Ankara of lethally infected mice,” PLoS ONE, vol. 5, no. 3, Article ID e9659, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. E. A. Moulton, J. P. Atkinson, and R. M. L. Buller, “Surviving mousepox infection requires the complement system,” PLoS Pathogens, vol. 4, no. 12, Article ID e1000249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. K. Parker, S. Parker, W. M. Yokoyama, J. A. Corbett, and R. M. L. Buller, “Induction of natural killer cell responses by ectromelia virus controls infection,” Journal of Virology, vol. 81, no. 8, pp. 4070–4079, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Martinez, X. Huang, and Y. Yang, “Direct TLR2 signaling is critical for NK cell activation and function in response to vaccinia viral infection,” PLoS Pathogens, vol. 6, no. 3, Article ID e1000811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Xu, A. J. Johnson, D. Liggitt, and M. J. Bevan, “Cellular and humoral immunity against vaccinia virus infection of mice,” Journal of Immunology, vol. 172, no. 10, pp. 6265–6271, 2004. View at Google Scholar · View at Scopus
  29. M. Fang and L. J. Sigal, “Antibodies and CD8+ T cells are complementary and essential for natural resistance to a highly lethal cytopathic virus,” Journal of Immunology, vol. 175, no. 10, pp. 6829–6836, 2005. View at Google Scholar · View at Scopus
  30. G. Chaudhri, V. Panchanathan, H. Bluethmann, and G. Karupiah, “Obligatory requirement for antibody in recovery from a primary poxvirus infection,” Journal of Virology, vol. 80, no. 13, pp. 6339–6344, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. E. Moyron-Quiroz, M. M. McCausland, R. Kageyama, A. Sette, and S. Crotty, “The smallpox vaccine induces an early neutralizing IgM response,” Vaccine, vol. 28, no. 1, pp. 140–147, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. G. S. Trindade, G. L. Emerson, D. S. Carroll, E. G. Kroon, and I. K. Damon, “Brazilian vaccinia viruses and their origins,” Emerging Infectious Diseases, vol. 13, no. 7, pp. 965–972, 2007. View at Google Scholar · View at Scopus
  33. F. G. Da Fonseca, E. G. Kroon, M. L. Nogueira, and G. De Souza Trindade, “Zoonotic vaccinia virus outbreaks in Brazil,” Future Virology, vol. 6, no. 6, pp. 697–707, 2011. View at Publisher · View at Google Scholar
  34. B. P. Drumond, J. A. Leite, F. G. da Fonseca, C. A. Bonjardim, P. C. P. Ferreira, and E. G. Kroon, “Brazilian Vaccinia virus strains are genetically divergent and differ from the Lister vaccine strain,” Microbes and Infection, vol. 10, no. 2, pp. 185–197, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. A. Mathew, F. A. Ennis, and A. L. Rothman, “Transient decreases in human T cell proliferative responses following vaccinia immunization,” Clinical Immunology, vol. 96, no. 2, pp. 100–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Dasgupta, E. Hammarlund, M. K. Slifka, and K. Früh, “Cowpox virus evades CTL recognition and inhibits the intracellular transport of MHC class I molecules,” Journal of Immunology, vol. 178, no. 3, pp. 1654–1661, 2007. View at Google Scholar · View at Scopus
  37. P. Li, N. Wang, D. Zhou et al., “Disruption of MHC class II-restricted antigen presentation by vaccinia virus,” Journal of Immunology, vol. 175, no. 10, pp. 6481–6488, 2005. View at Google Scholar · View at Scopus
  38. K. E. Rehm, R. F. Connor, G. J. B. Jones, K. Yimbu, M. D. Mannie, and R. L. Roper, “Vaccinia virus decreases major histocompatibility complex (MHC) class II antigen presentation, T-cell priming, and peptide association with MHC class II,” Immunology, vol. 128, no. 3, pp. 381–392, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. K. E. Rehm, R. F. Connor, G. J. B. Jones, K. Yimbu, and R. L. Roper, “Vaccinia virus A35R inhibits MHC class II antigen presentation,” Virology, vol. 397, no. 1, pp. 176–186, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Riley and B. Greenwood, “Measuring cellular immune responses to malaria antigens in endemic populations: epidemiological, parasitological and physiological factors which influence in vitro assays,” Immunology Letters, vol. 25, no. 1-3, pp. 221–229, 1990. View at Publisher · View at Google Scholar · View at Scopus
  41. F. Al-Yaman, B. Genton, J. Taraika, R. Anders, and M. P. Alpers, “Cellular immunity to merozoite surface protein 2 (FC27 and 3D7) in Papua New Guinean children. Temporal variation and relation to clinical and parasitological status,” Parasite Immunology, vol. 19, no. 5, pp. 207–214, 1997. View at Google Scholar · View at Scopus
  42. J. B. Johnston and G. McFadden, “Poxvirus immunomodulatory strategies: current perspectives,” Journal of Virology, vol. 77, no. 11, pp. 6093–6100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. B. T. Seet, J. B. Johnston, C. R. Brunetti et al., “Poxviruses and immune evasion,” Annual Review of Immunology, vol. 21, pp. 377–423, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. I. R. Haga and A. G. Bowie, “Evasion of innate immunity by vaccinia virus,” Parasitology, vol. 130, no. 1, pp. S11–S25, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. K. A. Sepkowitz, “How contagious is vaccinia?” The New England Journal of Medicine, vol. 348, no. 5, pp. 439–446, 2003. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Vora, I. Damon, V. Fulginiti et al., “Severe eczema vaccinatum in a household contact of a smallpox vaccinee,” Clinical Infectious Diseases, vol. 46, no. 10, pp. 1555–1561, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Li, N. Chen, Z. Feng et al., “Genomic sequence and analysis of a vaccinia virus isolate from a patient with a smallpox vaccine-related complication,” Virology Journal, vol. 3, article 88, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. G. Antoine, F. Scheiflinger, F. Dorner, and F. G. Falkner, “The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses,” Virology, vol. 244, no. 2, pp. 365–396, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. L. R. Dunlop, K. A. Oehlberg, J. J. Reid, D. Avci, and A. M. Rosengard, “Variola virus immune evasion proteins,” Microbes and Infection, vol. 5, no. 11, pp. 1049–1056, 2003. View at Publisher · View at Google Scholar · View at Scopus