Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 186872, 11 pages
http://dx.doi.org/10.1155/2013/186872
Review Article

Involvement of MicroRNA in Microglia-Mediated Immune Response

1PhD Programme in Experimental Biology and Biomedicine (PDBEB), CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
2Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
3CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
4Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3001-401 Coimbra, Portugal

Received 21 March 2013; Accepted 8 May 2013

Academic Editor: Anirban Basu

Copyright © 2013 J. Guedes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. Marín-Teva, I. Dusart, C. Colin, A. Gervais, N. Van Rooijen, and M. Mallat, “Microglia promote the death of developing Purkinje cells,” Neuron, vol. 41, no. 4, pp. 535–547, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Roumier, C. Béchade, J. C. Poncer et al., “Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse,” Journal of Neuroscience, vol. 24, no. 50, pp. 11421–11428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. E. Tremblay, R. L. Lowery, and A. K. Majewska, “Microglial interactions with synapses are modulated by visual experience,” PLoS Biology, vol. 8, no. 11, Article ID e1000527, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Prinz, J. Priller, S. S. Sisodia, and R. M. Ransohoff, “Heterogeneity of CNS myeloid cells and their roles in neurodegeneration,” Nature Neuroscience, vol. 14, no. 10, pp. 1227–1235, 2011. View at Google Scholar
  5. T. M. Malm, J. Magga, G. F. Kuh, T. Vatanen, M. Koistinaho, and J. Koistinaho, “Minocycline reduces engraftment and activation of bone marrow-derived cells but sustains their phagocytic activity in a mouse model of Alzheimer's disease,” Glia, vol. 56, no. 16, pp. 1767–1779, 2008. View at Google Scholar · View at Scopus
  6. A. Mildner, H. Schmidt, M. Nitsche et al., “Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions,” Nature Neuroscience, vol. 10, no. 12, pp. 1544–1553, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Ginhoux, M. Greter, M. Leboeuf et al., “Fate mapping analysis reveals that adult microglia derive from primitive macrophages,” Science, vol. 330, no. 6005, pp. 841–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Opydo-Chanek and Z. Dabrowski, “Response of astrocytes and microglia/macrophages to brain injury after bone marrow stromal cell transplantation: a quantitative study,” Neuroscience Letters, vol. 487, no. 2, pp. 163–168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Priller, A. Flügel, T. Wehner et al., “Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment,” Nature Medicine, vol. 7, no. 12, pp. 1356–1361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. R. Simard and S. Rivest, “Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia,” FASEB Journal, vol. 18, no. 9, pp. 998–1000, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. M. A. Lynch, “The multifaceted profile of activated microglia,” Molecular Neurobiology, vol. 40, no. 2, pp. 139–156, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Boche, V. H. Perry, and J. A. Nicoll, “Review: activation patterns of microglia and their identification in the human brain,” Neuropathology and Applied Neurobiology, vol. 39, no. 1, pp. 3–18, 2013. View at Google Scholar
  13. S. M. Gentleman, P. D. Leclercq, L. Moyes et al., “Long-term intracerebral inflammatory response after traumatic brain injury,” Forensic Science International, vol. 146, no. 2-3, pp. 97–104, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. Z. S. Vexler, X. N. Tang, and M. A. Yenari, “Inflammation in adult and neonatal stroke,” Clinical Neuroscience Research, vol. 6, no. 5, pp. 293–313, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Colton, R. T. Mott, H. Sharpe, Q. Xu, W. E. Van Nostrand, and M. P. Vitek, “Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD,” Journal of Neuroinflammation, vol. 3, article 27, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. D. H. Cribbs, N. C. Berchtold, V. Perreau et al., “Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: a microarray study,” Journal of Neuroinflammation, vol. 9, p. 179, 2012. View at Google Scholar
  17. W. S. T. Griffin, Jin Gen Sheng, G. W. Roberts, and R. E. Mrak, “Interleukin-1 expression in different plaque types in Alzheimer's disease: significance in plaque evolution,” Journal of Neuropathology and Experimental Neurology, vol. 54, no. 2, pp. 276–281, 1995. View at Google Scholar · View at Scopus
  18. A. L. Cardoso, J. R. Guedes, L. Pereira de Almeida, and M. C. Pedroso de Lima, “miR-155 modulates microglia-mediated immune response by down-regulating SOCS-1 and promoting cytokine and nitric oxide production,” Immunology, vol. 135, no. 1, pp. 73–88, 2012. View at Google Scholar
  19. K. Dutta, D. Ghosh, A. Nazmi, K. lal Kumawat, and A. Basu, “A common carcinogen benzo[a]pyrene causes neuronal death in mouse via microglial activation,” PLoS ONE, vol. 5, no. 4, Article ID e9984, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. D. Ghosh, M. K. Mishra, S. Das, D. K. Kaushik, and A. Basu, “Tobacco carcinogen induces microglial activation and subsequent neuronal damage,” Journal of Neurochemistry, vol. 110, no. 3, pp. 1070–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Cunningham, “Microglia and neurodegeneration: the role of systemic inflammation,” Glia, vol. 61, no. 1, pp. 71–90, 2013. View at Google Scholar
  22. S. Arora, R. Rana, A. Chhabra, A. Jaiswal, and V. Rani, “miRNA-transcription factor interactions: a combinatorial regulation of gene expression,” Molecular Genetics and Genomics, vol. 288, no. 3-4, pp. 77–87, 2013. View at Publisher · View at Google Scholar
  23. W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. P. Bartel, “MicroRNAs: target recognition and regulatory functions,” Cell, vol. 136, no. 2, pp. 215–233, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. P. Perron and P. Provost, “Protein interactions and complexes in human microRNA biogenesis and function,” Frontiers in Bioscience, vol. 13, no. 7, pp. 2537–2547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Denli, B. B. J. Tops, R. H. A. Plasterk, R. F. Ketting, and G. J. Hannon, “Processing of primary microRNAs by the microprocessor complex,” Nature, vol. 432, no. 7014, pp. 231–235, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. H. Y. Hu, Z. Yan, Y. Xu et al., “Sequence features associated with microRNA strand selection in humans and flies,” BMC Genomics, vol. 10, article 413, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. L. A. MacFarlane and P. R. Murphy, “MicroRNA: biogenesis, function and role in cancer,” Current Genomics, vol. 11, no. 7, pp. 537–561, 2010. View at Google Scholar · View at Scopus
  29. C. Y. Chen, S. T. Chen, C. S. Fuh, H. F. Juan, and H. C. Huang, “Coregulation of transcription factors and microRNAs in human transcriptional regulatory network,” BMC Bioinformatics, vol. 12, no. 1, article S41, 2011. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Fazi, A. Rosa, A. Fatica et al., “A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis,” Cell, vol. 123, no. 5, pp. 819–831, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. A. R. R. Forrest, M. Kanamori-Katayama, Y. Tomaru et al., “Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation,” Leukemia, vol. 24, no. 2, pp. 460–466, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Pospisil, K. Vargova, J. Kokavec et al., “Epigenetic silencing of the oncogenic miR-17-92 cluster during PU. 1-directed macrophage differentiation,” The EMBO Journal, vol. 30, no. 21, pp. 4450–4464, 2011. View at Google Scholar
  33. E. D. Ponomarev, T. Veremeyko, N. Barteneva, A. M. Krichevsky, and H. L. Weiner, “MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway,” Nature Medicine, vol. 17, no. 1, pp. 64–70, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. E. D. Ponomarev, T. Veremeyko, and H. L. Weiner, “MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS,” Glia, vol. 61, no. 1, pp. 91–103, 2013. View at Google Scholar
  35. X. Zhou, B. Spittau, and K. Krieglstein, “TGFbeta signalling plays an important role in IL4-induced alternative activation of microglia,” Journal of Neuroinflammation, vol. 9, p. 210, 2012. View at Google Scholar
  36. S. Bala, M. Marcos, K. Kodys et al., “Up-regulation of microRNA-155 in macrophages contributes to increased Tumor Necrosis Factor α (TNFα) production via increased mRNA half-life in alcoholic liver disease,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1436–1444, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Wang, J. Hou, L. Lin et al., “Inducible microRNA-155 feedback promotes type I IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1,” Journal of Immunology, vol. 185, no. 10, pp. 6226–6233, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. E. N. Benveniste and H. Qin, “Type I interferons as anti-inflammatory mediators,” Science's STKE, vol. 2007, no. 416, article pe70, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Dalpke, K. Heeg, H. Bartz, and A. Baetz, “Regulation of innate immunity by suppressor of cytokine signaling (SOCS) proteins,” Immunobiology, vol. 213, no. 3-4, pp. 225–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Louafi, R. T. Martinez-Nunez, and T. Sanchez-Elsner, “MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-β,” Journal of Biological Chemistry, vol. 285, no. 53, pp. 41328–41336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Ruffell, F. Mourkioti, A. Gambardella et al., “A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 41, pp. 17475–17480, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Y. Zhu, L. Qin, C. Jian-Xia, L. Ke, and G. Bao-Xue, “MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages,” Journal of Immunology, vol. 185, no. 12, pp. 7435–7442, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. A. Chaudhuri, A. Y. So, N. Sinha et al., “MicroRNA-125b potentiates macrophage activation,” The Journal of Immunology, vol. 187, no. 10, pp. 5062–5068, 2011. View at Google Scholar
  44. L. Lai, Y. Song, Y. Liu et al., “MicroRNA-92a negatively regulates TLR-triggered inflammatory response in macrophages by targeting MKK4,” Journal of Biological Chemistry, vol. 288, no. 11, pp. 7956–7967, 2013. View at Publisher · View at Google Scholar
  45. M. Fiala, Q. N. Liu, J. Sayre et al., “Cyclooxygenase-2-positive macrophages infiltrate the Alzheimer's disease brain and damage the blood-brain barrier,” European Journal of Clinical Investigation, vol. 32, no. 5, pp. 360–371, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. A. R. Simard, D. Soulet, G. Gowing, J. P. Julien, and S. Rivest, “Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease,” Neuron, vol. 49, no. 4, pp. 489–502, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. K. J. Tracey, “Understanding immunity requires more than immunology,” Nature Immunology, vol. 11, no. 7, pp. 561–564, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Soreq and Y. Wolf, “NeurimmiRs: microRNAs in the neuroimmune interface,” Trends in Molecular Medicine, vol. 17, no. 10, pp. 548–555, 2011. View at Google Scholar
  49. W. J. Lukiw, Y. Zhao, and G. C. Jian, “An NF-κB-sensitive micro RNA-146a-mediated inflammatory circuit in alzheimer disease and in stressed human brain cells,” Journal of Biological Chemistry, vol. 283, no. 46, pp. 31315–31322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Aronica, K. Fluiter, A. Iyer et al., “Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy,” European Journal of Neuroscience, vol. 31, no. 6, pp. 1100–1107, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Y. Li, J. G. Cui, P. Dua, A. I. Pogue, S. Bhattacharjee, and W. J. Lukiw, “Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells,” Neuroscience Letters, vol. 499, no. 2, pp. 109–113, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Visvanathan, S. Lee, B. Lee, J. W. Lee, and S. K. Lee, “The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development,” Genes and Development, vol. 21, no. 7, pp. 744–749, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Chandrasekar and J. L. Dreyer, “microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity,” Molecular and Cellular Neuroscience, vol. 42, no. 4, pp. 350–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Fénelon, J. Mukai, B. Xu et al., “Deficiency of Dgcr8, a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 11, pp. 4447–4452, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. T. Lee, K. Chu, W. S. Im et al., “Altered microRNA regulation in Huntington's disease models,” Experimental Neurology, vol. 227, no. 1, pp. 172–179, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Martí, L. Pantano, M. Bañez-Coronel et al., “A myriad of miRNA variants in control and Huntington's disease brain regions detected by massively parallel sequencing,” Nucleic Acids Research, vol. 38, no. 20, pp. 7219–7235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. E. Miñones-Moyano, S. Porta, G. Escaramís et al., “MicroRNA profiling of Parkinson's disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function,” Human Molecular Genetics, vol. 20, no. 15, pp. 3067–3078, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. H. Williams, G. Valdez, V. Moresi et al., “MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice,” Science, vol. 326, no. 5959, pp. 1549–1554, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Wang, J. Liu, Y. Zong et al., “MiR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer's disease targets TGF-β type II receptor,” Brain Research, vol. 1357, pp. 166–174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. N. Schonrock, Y. D. Ke, D. Humphreys et al., “Neuronal microRNA deregulation in response to Alzheimer's disease amyloid-beta,” PloS ONE, vol. 5, no. 6, Article ID e11070, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. P. M. Gaughwin, M. Ciesla, N. Lahiri, S. J. Tabrizi, P. Brundin, and M. Björkqvist, “Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease,” Human Molecular Genetics, vol. 20, no. 11, Article ID ddr111, pp. 2225–2237, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Martins, A. Rosa, L. C. Guedes et al., “Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson's disease,” PLoS ONE, vol. 6, no. 10, Article ID e25443, 2011. View at Google Scholar
  63. H. Geekiyanage, G. A. Jicha, P. T. Nelson, and C. Chan, “Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease,” Experimental Neurology, vol. 235, no. 2, pp. 491–496, 2012. View at Google Scholar
  64. P. N. Alexandrov, P. Dua, J. M. Hill et al., “microRNA (miRNA) speciation in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF),” International Journal of Biochemistry and Molecular Biology, vol. 3, no. 4, pp. 365–373, 2012. View at Google Scholar
  65. R. Mishra, C. Chhatbar, and S. K. Singh, “HIV-1 Tat C-mediated regulation of tumor necrosis factor receptor-associated factor-3 by microRNA 32 in human microglia,” Journal of Neuroinflammation, vol. 9, p. 131, 2012. View at Google Scholar
  66. S. Rom, I. Rom, G. Passiatore et al., “CCL8/MCP-2 is a target for mir-146a in HIV-1-infected human microglial cells,” FASEB Journal, vol. 24, no. 7, pp. 2292–2300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. R. S. Dave and K. Khalili, “Morphine treatment of human monocyte-derived macrophages induces differential miRNA and protein expression: impact on inflammation and oxidative stress in the central nervous system,” Journal of Cellular Biochemistry, vol. 110, no. 4, pp. 834–845, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Zhang, L. Y. Dong, Y. J. Li, Z. Hong, and W. S. Wei, “miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia,” Glia, vol. 60, no. 12, pp. 1888–1895, 2012. View at Google Scholar
  69. L. Zhang, L. Y. Dong, Y. J. Li, Z. Hong, and W. S. Wei, “The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor,” Journal of Neuroinflammation, vol. 9, p. 211, 2012. View at Google Scholar
  70. R. M. O'Connell, D. Kahn, W. S. J. Gibson et al., “MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development,” Immunity, vol. 33, no. 4, pp. 607–619, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. O. Butovsky, S. Siddiqui, G. Gabriely et al., “Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS,” The Journal of Clinical Investigation, vol. 122, no. 9, pp. 3063–3087, 2012. View at Google Scholar
  72. S. M. Lehmann, C. Kruger, B. Park et al., “An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration,” Nature Neuroscience, vol. 15, no. 6, pp. 827–835, 2012. View at Google Scholar
  73. R. Saba, S. Gushue, R. L. Huzarewich et al., “MicroRNA 146a (miR-146a) is over-expressed during prion disease and modulates the innate immune response and the microglial activation state,” PLoS ONE, vol. 7, no. 2, Article ID e30832, 2012. View at Google Scholar
  74. J. Gao, W. Y. Wang, Y. W. Mao et al., “A novel pathway regulates memory and plasticity via SIRT1 and miR-134,” Nature, vol. 466, no. 7310, pp. 1105–1109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. Y. He, C. Yang, C. M. Kirkmire, and Z. J. Wang, “Regulation of opioid tolerance by let-7 family microRNA targeting the μ opioid receptor,” Journal of Neuroscience, vol. 30, no. 30, pp. 10251–10258, 2010. View at Publisher · View at Google Scholar · View at Scopus
  76. J. A. Hollander, H. I. Im, A. L. Amelio et al., “Striatal microRNA controls cocaine intake through CREB signalling,” Nature, vol. 466, no. 7303, pp. 197–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. P. M. Costa, A. L. Cardoso, C. Nobrega et al., “MicroRNA-21 silencing enhances the cytotoxic effect of the antiangiogenic drug sunitinib in glioblastoma,” Human Molecular Genetics, vol. 22, no. 5, pp. 904–918, 2013. View at Google Scholar
  78. H. L. Willemen, X. J. Huo, Q. L. Mao-Ying et al., “MicroRNA-124 as a novel treatment for persistent hyperalgesia,” Journal of Neuroinflammation, vol. 9, p. 143, 2012. View at Google Scholar
  79. A. Selvamani, P. Sathyan, R. C. Miranda, and F. Sohrabji, “An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model,” PLoS ONE, vol. 7, no. 2, Article ID e32662, 2012. View at Google Scholar
  80. M. G. Hemida, X. Ye, S. Thair, and D. Yang, “Exploiting the therapeutic potential of microRNAs in viral diseases: expectations and limitations,” Molecular Diagnosis and Therapy, vol. 14, no. 5, pp. 271–282, 2010. View at Publisher · View at Google Scholar · View at Scopus