Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 267871, 11 pages
http://dx.doi.org/10.1155/2013/267871
Clinical Study

Effect of Selective Serotonin Reuptake Inhibitors and Immunomodulator on Cytokines Levels: An Alternative Therapy for Patients with Major Depressive Disorder

1Department of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
2Universidad Autónoma Metropolitana. Avenida San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, 09340 Mexico City, DF, Mexico
3National Institute of Psychiatry “Ramón de la Fuente”, Calzada México-Xochimilco 101, Col. San Lorenzo Huipulco, Tlalpan, 14370 Mexico City, DF, Mexico
4Department of Immunology, National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), 11340 Mexico City, DF, Mexico
5Departamento de Inmunología, Instituto Nacional de Cardiología, 14080 Mexico City, DF, Mexico

Received 27 July 2013; Accepted 27 September 2013

Academic Editor: Rogelio Hernández-Pando

Copyright © 2013 María Eugenia Hernandez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. S. Kendler, L. M. Thornton, and C. O. Gardner, “Stressful life events and previous episodes in the etiology of major depression in women: an evaluation of the “kindling” hypothesis,” American Journal of Psychiatry, vol. 157, no. 8, pp. 1243–1251, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. C. Kessler, P. Berglund, O. Demler et al., “The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R),” The Journal of the American Medical Association, vol. 289, no. 23, pp. 3095–3105, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. World Health Organization, The Global Burden of Disease 2004 Update, World Health Organization, 2008.
  4. World Health Organization, “Investing in mental health,” World Health Organization, 2003, http://www.who.int/mental_health/en/.
  5. S. Moussavi, S. Chatterji, E. Verdes, A. Tandon, V. Patel, and B. Ustun, “Depression, chronic diseases, and decrements in health: results from the World Health Surveys,” The Lancet, vol. 370, no. 9590, pp. 851–858, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. M. Pariante and A. H. Miller, “Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment,” Biological Psychiatry, vol. 49, no. 5, pp. 391–404, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Holsboer, “The corticosteroid receptor hypothesis of depression,” Neuropsychopharmacology, vol. 23, no. 5, pp. 477–501, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. N. Silverman and E. M. Sternberg, “Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction,” Annals of the New York Academy of Sciences, vol. 1261, pp. 55–63, 2012. View at Google Scholar
  9. H. Besedovsky and A. Del Rey, “Brain cytokines as integrators of the immune-neuroendocrine network,” in Handbook of Neurochemistry and Molecular Neurobiology, A. Lajtha, Ed., Springer, 2008. View at Google Scholar
  10. P. A. Zunszain, C. Anacker, A. Cattaneo, L. A. Carvalho, and C. M. Pariante, “Glucocorticoids, cytokines and brain abnormalities in depression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 35, no. 3, pp. 722–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Kronfol, “Immune dysregulation in major depression: a critical review of existing evidence,” International Journal of Neuropsychopharmacology, vol. 5, no. 4, pp. 333–343, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. J. C. Felger and F. E. Lotrich, “Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications,” in Neuroscience, vol. 246, pp. 199–229, 2013. View at Google Scholar
  13. D. A. Axelson, P. M. Doraiswamy, W. M. McDonald et al., “Hyperocortisolemia and hippocampal changes in depression,” Psychiatry Research, vol. 47, no. 2, pp. 163–173, 1993. View at Publisher · View at Google Scholar · View at Scopus
  14. T. J. Huber, K. Issa, G. Schik, and O. T. Wolf, “The cortisol awakening response is blunted in psychotherapy inpatients suffering from depression,” Psychoneuroendocrinology, vol. 31, no. 7, pp. 900–904, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Nikisch, A. A. Mathé, A. Czernik et al., “Long-term citalopram administration reduces responsiveness of HPA axis in patients with major depression: relationship with S-citalopram concentrations in plasma and cerebrospinal fluid (CSF) and clinical response,” Psychopharmacology, vol. 181, no. 4, pp. 751–760, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Bhagwagar, R. Whale, and P. J. Cowen, “State and trait abnormalities in serotonin function in major depression,” British Journal of Psychiatry, vol. 180, pp. 24–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. D. J. Kupfer, “Long-term treatment of depression,” Journal of Clinical Psychiatry, vol. 52, supplement 5, pp. 28–34, 1991. View at Google Scholar · View at Scopus
  18. M. Okuyama-Tamura, M. Mikuni, and I. Kojima, “Modulation of the human glucocorticoid receptor function by antidepressive compounds,” Neuroscience Letters, vol. 342, no. 3, pp. 206–210, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Pariante, A. Makoff, S. Lovestone et al., “Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters,” British Journal of Pharmacology, vol. 134, no. 6, pp. 1335–1343, 2001. View at Google Scholar · View at Scopus
  20. M. E. Hernández, D. Mendieta, D. Martínez-Fong et al., “Variations in circulating cytokine levels during 52 week course of treatment with SSRI for major depressive disorder,” European Neuropsychopharmacology, vol. 18, no. 12, pp. 917–924, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Pavon, G. Sandoval-Lopez, M. Eugenia Hernandez et al., “Th2 cytokine response in major depressive disorder patients before treatment,” Journal of Neuroimmunology, vol. 172, pp. 156–165, 2006. View at Google Scholar
  22. M. Pompili, P. Venturini, M. Palermo et al., “Mood disorders medications: predictors of nonadherence—review of the current literature,” Expert Review of Neurotherapeutics, vol. 13, no. 7, pp. 809–825, 2013. View at Google Scholar
  23. E. Medina-Rivero, G. Merchand-Reyes, L. Pavón et al., “Batch-to-batch reproducibility of transferon,” Journal of Pharmaceutical and Biomedical Analysis, vol. 88, pp. 289–294, 2014. View at Publisher · View at Google Scholar
  24. J. Byston, K. Cech, J. Pekarek, and J. Jilkova, “Effect of anti-herpes specific transfer factor,” Biotherapy, vol. 9, no. 1–3, pp. 73–75, 1996. View at Google Scholar · View at Scopus
  25. G. Pizza, C. De Vinci, G. L. Conte et al., “Immunotherapy of metastatic kidney cancer,” International Journal of Cancer, vol. 94, no. 1, pp. 109–120, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. M. A. Franco-Molina, E. Mendoza-Gamboa, L. Castillo-León, R. S. Tamez-Guerra, and C. Rodríguez-Padilla, “Bovine dialyzable leukocyte extract modulates the nitric oxide and proinflammatory cytokine production in lipopolysaccharide-stimulated murine peritoneal macrophages in vitro,” Journal of Medicinal Food, vol. 8, no. 1, pp. 20–26, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Berrón-Pérez, R. Chávez-Sánchez, I. Estrada-García et al., “Indications, usage, and dosage of the transfer factor,” Revista Alergia Mexico, vol. 54, no. 4, pp. 134–139, 2007. View at Google Scholar · View at Scopus
  28. R. M. Sapolsky and P. M. Plotsky, “Hypercortisolism and its possible neural bases,” Biological Psychiatry, vol. 27, no. 9, pp. 937–952, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. B. S. McEwen, “Structural plasticity of the adult brain: how animal models help us understand brain changes in depression and systemic disorders related to depression,” Dialogues in Clinical Neuroscience, vol. 6, no. 2, pp. 119–133, 2004. View at Google Scholar · View at Scopus
  30. P. M. Plotsky, M. J. Owens, and C. B. Nemeroff, “Psychoneuroendocrinology of depression: hypothalamic-pituitary-adrenal axis,” Psychiatric Clinics of North America, vol. 21, no. 2, pp. 293–307, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Schüle, T. C. Baghai, D. Eser, M. Schwarz, B. Bondy, and R. Rupprecht, “Effects of mirtazapine on dehydroepiandrosterone-sulfate and cortisol plasma concentrations in depressed patients,” Journal of Psychiatric Research, vol. 43, no. 5, pp. 538–545, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Mössner and K.-P. Lesch, “Role of serotonin in the immune system and in neuroimmune interactions,” Brain, Behavior, and Immunity, vol. 12, no. 4, pp. 249–271, 1998. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Färber, U. Haus, M. Späth, and S. Drechsler, “Physiology and pathophysiology of the 5-HT3 receptor,” Scandinavian Journal of Rheumatology, Supplement, vol. 33, no. 119, pp. 2–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. E. M. Sternberg, “Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens,” Nature Reviews Immunology, vol. 6, no. 4, pp. 318–328, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. Blardi, A. De Lalla, A. Leo et al., “Serotonin and fluoxetine levels in plasma and platelets after fluoxetine treatment in depressive patients,” Journal of Clinical Psychopharmacology, vol. 22, no. 2, pp. 131–136, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Bschor, M. Ising, S. Erbe et al., “Impact of citalopram on the HPA system. A study of the combined DEX/CRH test in 30 unipolar depressed patients,” Journal of Psychiatric Research, vol. 46, no. 1, pp. 111–117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  37. C. M. Pariante, R. B. Kim, A. Makoff, and R. W. Kerwin, “Antidepressant fluoxetine enhances glucocorticoid receptor function in vitro by modulating membrane steroid transporters,” British Journal of Pharmacology, vol. 139, no. 6, pp. 1111–1118, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. T. Spijker and E. F. C. van Rossum, “Glucocorticoid sensitivity in mood disorders,” Neuroendocrinology, vol. 95, no. 3, pp. 179–186, 2012. View at Publisher · View at Google Scholar · View at Scopus
  39. L. A. Carvalho, M. F. Juruena, A. S. Papadopoulos et al., “Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression,” Neuropsychopharmacology, vol. 33, no. 13, pp. 3182–3189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. V. Contesse, H. Lefebvre, S. Lenglet, J.-M. Kuhn, C. Delarue, and H. Vaudry, “Role of 5-HT in the regulation of the brain-pituitary-adrenal axis: effects of 5-HT on adrenocortical cells,” Canadian Journal of Physiology and Pharmacology, vol. 78, no. 12, pp. 967–983, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. C. Delarue, V. Contesse, H. Lefebvre et al., “Pharmacological profile of serotonergic receptors in the adrenal gland,” Endocrine Research, vol. 24, no. 3-4, pp. 687–694, 1998. View at Google Scholar · View at Scopus
  42. D. A. Johnson, E. J. Grant, C. D. Ingram, and S. E. Gartside, “Glucocorticoid receptor antagonists hasten and augment neurochemical responses to a selective serotonin reuptake inhibitor antidepressant,” Biological Psychiatry, vol. 62, no. 11, pp. 1228–1235, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. D. A. Johnson, C. D. Ingram, E. J. Grant, M. Craighead, and S. E. Gartside, “Glucocorticoid receptor antagonism augments fluoxetine-induced downregulation of the 5-HT transporter,” Neuropsychopharmacology, vol. 34, no. 2, pp. 399–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Thakore, C. Barnes, J. Joyce, S. Medbak, and T. G. Dinan, “Effects of antidepressant treatment on corticotropin-induced cortisol responses in patients with melancholic depression,” Psychiatry Research, vol. 73, no. 1-2, pp. 27–32, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. A. González, F. Fazzino, M. Castillo, S. Mata, and L. Lima, “Serotonin, 5-HT1A serotonin receptors and proliferation of lymphocytes in major depression patients,” NeuroImmunoModulation, vol. 14, no. 1, pp. 8–15, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Mizrahi, A. Stojanovic, M. Urbina, I. Carreira, and L. Lima, “Differential cAMP levels and serotonin effects in blood peripheral mononuclear cells and lymphocytes from major depression patients,” International Immunopharmacology, vol. 4, no. 8, pp. 1125–1133, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. G. J. Gormley, M. T. Lowy, A. T. Reder, V. D. Hospelhorn, J. F. Antel, and H. Y. Meltzer, “Glucocorticoid receptors in depression: relationship to the dexamethasone suppression test,” American Journal of Psychiatry, vol. 142, no. 11, pp. 1278–1284, 1985. View at Google Scholar · View at Scopus
  48. M. T. Lowy, A. T. Reder, G. J. Gormley, and H. Y. Meltzer, “Comparison of in vivo and in vitro glucocorticoid sensitivity in depression: relationship to the dexamethasone suppresion test,” Biological Psychiatry, vol. 24, no. 6, pp. 619–630, 1988. View at Google Scholar · View at Scopus
  49. L. Lima and M. Urbina, “Serotonin transporter modulation in blood lymphocytes from patients with major depression,” Cellular and Molecular Neurobiology, vol. 22, no. 5-6, pp. 797–804, 2002. View at Publisher · View at Google Scholar · View at Scopus
  50. M. Kubera, M. Maes, G. Kenis, Y.-K. Kim, and W. Lasoń, “Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor α and interleukin-6,” Psychiatry Research, vol. 134, no. 3, pp. 251–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. I. J. Elenkov, “Neurohormonal-cytokine interactions: implications for inflammation, common human diseases and well-being,” Neurochemistry International, vol. 52, no. 1, pp. 40–51, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. K. Kim, K. S. Na, K. H. Shin, H. Y. Jung, S. H. Choi, and J. B. Kim, “Cytokine imbalance in the pathophysiology of major depressive disorder,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 31, no. 5, pp. 1044–1053, 2007. View at Google Scholar
  53. Y.-K. Kim, S.-W. Lee, S.-H. Kim et al., “Differences in cytokines between non-suicidal patients and suicidal patients in major depression,” Progress in Neuro-Psychopharmacology & Biological Psychiatry, vol. 32, no. 2, pp. 356–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Kubera, G. Kenis, E. Bosmans, S. Scharpé, and M. Maes, “Effects of serotonin and serotonergic agonists and antagonists on the production of interferon-γ and interleukin-10,” Neuropsychopharmacology, vol. 23, no. 1, pp. 89–98, 2000. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Hannestad, N. Dellagioia, and M. Bloch, “The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis,” Neuropsychopharmacology, vol. 36, no. 12, pp. 2452–2459, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Haack, D. Hinze-Selch, T. Fenzel et al., “Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis,” Journal of Psychiatric Research, vol. 33, no. 5, pp. 407–418, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. A. Basten, J. D. Pollard, J. G. Stewart et al., “Transfer factor in treatment of multiple sclerosis,” The Lancet, vol. 2, no. 8201, pp. 931–934, 1980. View at Google Scholar · View at Scopus
  58. S. Estrada-Parra, A. Nagaya, E. Serrano et al., “Comparative study of transfer factor and acyclovir in the treatment of herpes zoster,” International Journal of Immunopharmacology, vol. 20, no. 10, pp. 521–535, 1998. View at Publisher · View at Google Scholar · View at Scopus
  59. V. Pilotti, M. Mastrorilli, G. Pizza et al., “Transfer factor as an adjuvant to non-small cell lung cancer (NSCLC) therapy,” Biotherapy, vol. 9, no. 1–3, pp. 117–121, 1996. View at Google Scholar · View at Scopus
  60. S. R. Krutzik, B. Tan, H. Li et al., “TLR activation triggers the rapid differentiation of monocytes into macrophages and dendritic cells,” Nature Medicine, vol. 11, no. 6, pp. 653–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. G. I. Lancaster, Q. Khan, P. Drysdale et al., “The physiological regulation of toll-like receptor expression and function in humans,” Journal of Physiology, vol. 563, no. 3, pp. 945–955, 2005. View at Publisher · View at Google Scholar · View at Scopus