Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 345347, 7 pages
http://dx.doi.org/10.1155/2013/345347
Research Article

Correlation between the Frequency of Th17 Cell and the Expression of MicroRNA-206 in Patients with Dermatomyositis

1Department of Laboratory Medicine, The Affiliated People’s Hospital, Jiangsu University School of Medical Science and Laboratory Medicine, Zhenjiang 212013, China
2Department of Pathology and Centre of Infection and Immunology, The University of Hong Kong, Hong Kong
3Institute of Laboratory Medicine, Jiangsu University, Zhenjiang, China

Received 1 August 2013; Revised 11 September 2013; Accepted 13 September 2013

Academic Editor: E. Shevach

Copyright © 2013 Xinyi Tang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Bohan and J. B. Peter, “Polymyositis and dermatomyositis,” The New England Journal of Medicine, vol. 292, no. 7, pp. 344–347, 1975. View at Publisher · View at Google Scholar · View at Scopus
  2. J. P. Callen, “Dermatomyositis,” The Lancet, vol. 355, no. 9197, pp. 53–57, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. M. C. Dalakas and R. Hohlfeld, “Polymyositis and dermatomyositis,” The Lancet, vol. 362, no. 9388, pp. 971–982, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Ishii, M. Matsuda, Y. Shimojima, S. Itoh, T. Sumida, and S.-I. Ikeda, “Flow cytometric analysis of lymphocyte subpopulations and Th1/Th2 balance in patients with polymyositis and dermatomyositis,” Internal Medicine, vol. 47, no. 18, pp. 1593–1599, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. C. T. Weaver, R. D. Hatton, P. R. Mangan, and L. E. Harrington, “IL-17 family cytokines and the expanding diversity of effector T cell lineages,” Annual Review of Immunology, vol. 25, pp. 821–852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Cascão, R. A. Moura, I. Perpétuo et al., “Identification of a cytokine network sustaining neutrophil and Th17 activation in untreated early rheumatoid arthritis,” Arthritis Research & Therapy, vol. 12, no. 5, pp. 196–204, 2010. View at Publisher · View at Google Scholar
  7. S. Wang, Y. Shi, M. Yang et al., “Glucocorticoid-induced tumor necrosis factor receptor family-related protein exacerbates collagen-induced arthritis by enhancing the expansion of Th17 cells,” The American Journal of Pathology, vol. 180, no. 3, pp. 1059–1067, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Seiderer, I. Elben, J. Diegelmann et al., “Role of the novel Th17 cytokine IL-17F in inflammatory bowel disease (IBD): upregulated colonic IL-17F expression in active Crohn's disease and analysis of the IL17F p.His161Arg polymorphism in IBD,” Inflammatory Bowel Diseases, vol. 14, no. 4, pp. 437–445, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. S. Tzartos, M. A. Friese, M. J. Craner et al., “Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis,” The American Journal of Pathology, vol. 172, no. 1, pp. 146–155, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Leonardi, R. Matheson, C. Zachariae et al., “Anti-interleukin-17 monoclonal antibody ixekizumab in chronic plaque psoriasis,” The New England Journal of Medicine, vol. 366, no. 13, pp. 1190–1191, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Shi, H. Wang, Z. Su et al., “Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto's thyroiditis,” Scandinavian Journal of Immunology, vol. 72, no. 3, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Wang, S. E. Baidoo, Y. Liu et al., “T cell-derived leptin contributes to increased frequency of Th17 cells in female patients with Hashimoto's thyroiditis,” Clinical & Experimental Immunology, vol. 171, no. 1, pp. 63–68, 2013. View at Publisher · View at Google Scholar
  13. N. J. Wilson, K. Boniface, J. R. Chan et al., “Development, cytokine profile and function of human interleukin 17-producing helper T cells,” Nature Immunology, vol. 8, no. 9, pp. 950–957, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. E. V. Acosta-Rodriguez, G. Napolitani, A. Lanzavecchia, and F. Sallusto, “Interleukins 1β and 6 but not transforming growth factor-β are essential for the differentiation of interleukin 17-producing human T helper cells,” Nature Immunology, vol. 8, no. 9, pp. 942–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Volpe, N. Servant, R. Zollinger et al., “A critical function for transforming growth factor-β, interleukin 23 and proinflammatory cytokines in driving and modulating human TH-17 responses,” Nature Immunology, vol. 9, no. 6, pp. 650–657, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Yang, D. E. Anderson, C. Baecher-Allan et al., “IL-21 and TGF-β are required for differentiation of human TH17 cells,” Nature, vol. 454, no. 7202, pp. 350–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. G. Chevrel, G. Page, C. Granet, N. Streichenberger, A. Varennes, and P. Miossec, “Interleukin-17 increases the effects of IL-1β on muscle cells: arguments for the role of T cells in the pathogenesis of myositis,” Journal of Neuroimmunology, vol. 137, no. 1-2, pp. 125–133, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Bilgic, S. R. Ytterberg, S. Amin et al., “Interleukin-6 and type I interferon-regulated genes and chemokines Mark disease activity in dermatomyositis,” Arthritis & Rheumatism, vol. 60, no. 11, pp. 3436–3446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Lebson, A. Gocke, J. Rosenzweig et al., “Cutting edge: the transcription factor Kruppel-like factor 4 regulates the differentiation of Th17 cells independently of RORγt,” Journal of Immunology, vol. 185, no. 12, pp. 7161–7164, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. J. An, S. Golech, J. Klaewsongkram et al., “Krüppel-like factor 4 (KLF4) directly regulates proliferation in thymocyte development and IL-17 expression during Th17 differentiation,” The FASEB Journal, vol. 25, no. 10, pp. 3634–3645, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Yamanaka, “A fresh look at iPS cells,” Cell, vol. 137, no. 1, pp. 13–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Stefani and F. J. Slack, “Small non-coding RNAs in animal development,” Nature Reviews Molecular Cell Biology, vol. 9, no. 3, pp. 219–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Parasramka, W. M. Dashwood, R. Wang et al., “A role for low-abundance miRNAs in colon cancer: the miR-206/Krüppel-like factor 4 (KLF4) axis,” Clinical Epigenetics, vol. 4, no. 1, pp. 16–26, 2012. View at Publisher · View at Google Scholar
  24. F. Annunziato, L. Cosmi, F. Liotta, E. Maggi, and S. Romagnani, “Main features of human T helper 17 cells,” Annals of the New York Academy of Science, vol. 1283, pp. 66–70, 2013. View at Publisher · View at Google Scholar
  25. K. N. Mustafa and S. S. Dahbour, “Clinical characteristics and outcomes of patients with idiopathic inflammatory myopathies from Jordan 1996–2009,” Clinical Rheumatology, vol. 29, no. 12, pp. 1381–1385, 2010. View at Publisher · View at Google Scholar · View at Scopus