Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 349067, 12 pages
http://dx.doi.org/10.1155/2013/349067
Research Article

Lymphoid Progenitor Cells from Childhood Acute Lymphoblastic Leukemia Are Functionally Deficient and Express High Levels of the Transcriptional Repressor Gfi-1

1Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Avenue Cuauhtemoc 330, Colonia Doctores, 06720 Mexico City, DF, Mexico
2Molecular Biomedicine Program, CINVESTAV, 07360 Mexico City, DF, Mexico
3“Federico Gómez” Children’s Hospital, 06720 Mexico City, DF, Mexico
4Immunochemistry Research Unit, Medical Specialties Hospital, Mexican Institute for Social Security, 06720 Mexico City, DF, Mexico
5UMAE “Victorio de la Fuente Narváez”, Mexican Institute for Social Security, 07760 Mexico City, DF, Mexico
6“Carlos McGregor Sanchez” Hospital, Mexican Institute for Social Security, 03100 Mexico City, DF, Mexico

Received 18 May 2013; Revised 10 July 2013; Accepted 28 July 2013

Academic Editor: Niels Olsen Saraiva Camara

Copyright © 2013 Jessica Purizaca et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Purizaca, I. Meza, and R. Pelayo, “Early lymphoid development and microenvironmental cues in B-cell acute lymphoblastic leukemia,” Archives of Medical Research, vol. 43, no. 2, pp. 89–101, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Dorantes-Acosta and R. Pelayo, “Lineage switching in acute leukemias: a consequence of stem cell plasticity?” Bone Marrow Research, vol. 2012, Article ID 406796, 18 pages, 2012. View at Publisher · View at Google Scholar
  3. Y. Xie, S. M. Davies, Y. Xiang, L. L. Robison, and J. A. Ross, “Trends in leukemia incidence and survival in the United States (1973–1998),” Cancer, vol. 97, no. 9, pp. 2229–2235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. D. E. McNeil, T. R. Coté, L. Clegg, and A. Mauer, “SEER update of incidence and trends in pediatric malignancies: acute lymphoblastic leukemia,” Medical and Pediatric Oncology, vol. 39, no. 6, pp. 554–557, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. P. Perez-Vera, A. Reyes-Leon, and E. M. Fuentes-Panana, “Signaling proteins and transcription factors in normal and malignant early B cell development,” Bone Marrow Research, vol. 2011, Article ID 502751, 10 pages, 2011. View at Publisher · View at Google Scholar
  6. C. H. Pui, C. G. Mullighan, W. E. Evans, and M. V. Relling, “Pediatric acute lymphoblastic leukemia: where are we going and how do we get there?” Blood, vol. 120, pp. 1165–1174, 2012. View at Google Scholar
  7. P. Diamanti, C. V. Cox, J. P. Moppett, and A. Blair, “Parthenolide eliminates leukemia-initiating cell populations and improves survival in xenografts of childhood acute lymphoblastic leukemia,” Blood, vol. 121, pp. 1384–1393, 2013. View at Google Scholar
  8. O. Heidenreich and J. Vormoor, “Malignant stem cells in childhood ALL: the debate continues!,” Blood, vol. 113, no. 18, pp. 4476–4477, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Stankovic, V. Weston, C. M. McConville et al., “Clonal diversity of Ig and T-cell receptor gene rearrangements in childhood B-precursor acute lymphoblastic leukaemia,” Leukemia and Lymphoma, vol. 36, no. 3-4, pp. 213–224, 2000. View at Google Scholar · View at Scopus
  10. C. Cobaleda, N. Gutiérrez-Cianca, J. Pérez-Losada et al., “A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia,” Blood, vol. 95, no. 3, pp. 1007–1013, 2000. View at Google Scholar · View at Scopus
  11. C. V. Cox, P. Diamanti, R. S. Evely, P. R. Kearns, and A. Blair, “Expression of CD133 on leukemia-initiating cells in childhood ALL,” Blood, vol. 113, no. 14, pp. 3287–3296, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. V. Cox, R. S. Evely, A. Oakhill, D. H. Pamphilon, N. J. Goulden, and A. Blair, “Characterization of acute lymphoblastic leukemia progenitor cells,” Blood, vol. 104, no. 9, pp. 2919–2925, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Castor, L. Nilsson, I. Åstrand-Grundström et al., “Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia,” Nature Medicine, vol. 11, no. 6, pp. 630–637, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Hong, R. Gupta, P. Ancliff et al., “Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia,” Science, vol. 319, no. 5861, pp. 336–339, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. le Viseur, M. Hotfilder, S. Bomken et al., “In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties,” Cancer Cell, vol. 14, no. 1, pp. 47–58, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Rehe, K. Wilson, S. Bomken, D. Williamson, and J. Irving, “Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations,” EMBO Molecular Medicine, vol. 5, pp. 38–51, 2013. View at Google Scholar
  17. J. E. Dick, “Stem cell concepts renew cancer research,” Blood, vol. 112, no. 13, pp. 4793–4807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Anderson, C. Lutz, F. W. van Delft et al., “Genetic variegation of clonal architecture and propagating cells in leukaemia,” Nature, vol. 469, no. 7330, pp. 356–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. F. Notta, C. G. Mullighan, J. C. Wang et al., “Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells,” Nature, vol. 469, no. 7330, pp. 362–367, 2011. View at Publisher · View at Google Scholar
  20. Y. Baba, R. Pelayo, and P. W. Kincade, “Relationships between hematopoietic stem cells and lymphocyte progenitors,” Trends in Immunology, vol. 25, no. 12, pp. 645–649, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. R. Pelayo, R. S. Welner, Y. Nagai, and P. W. Kincade, “Life before the pre-B cell receptor checkpoint: specification and commitment of primitive lymphoid progenitors in adult bone marrow,” Seminars in Immunology, vol. 18, no. 1, pp. 2–11, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. R. S. Welner, R. Pelayo, and P. W. Kincade, “Evolving views on the genealogy of B cells,” Nature Reviews Immunology, vol. 8, no. 2, pp. 95–106, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Igarashi, S. C. Gregory, T. Yokota, N. Sakaguchi, and P. W. Kincade, “Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow,” Immunity, vol. 17, no. 2, pp. 117–130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Pelayo, J. Hirose, J. Huang et al., “Derivation of 2 categories of plasmacytoid dendritic cells in murine bone marrow,” Blood, vol. 105, no. 11, pp. 4407–4415, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Pelayo, K. Miyazaki, J. Huang, K. P. Garrett, D. G. Osmond, and P. W. Kincade, “Cell cycle quiescence of early lymphoid progenitors in adult bone marrow,” Stem Cells, vol. 24, no. 12, pp. 2703–2713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. R. S. Welner, R. Pelayo, K. P. Garrett et al., “Interferon-producing killer dendritic cells (IKDCs) arise via a unique differentiation pathway from primitive c-kitHiCD62L+ lymphoid progenitors,” Blood, vol. 109, no. 11, pp. 4825–4831, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Blom and H. Spits, “Development of human lymphoid cells,” Annual Review of Immunology, vol. 24, pp. 287–320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Doulatov, F. Notta, E. Laurenti, and J. E. Dick, “Hematopoiesis: a human perspective,” Cell Stem Cell, vol. 10, no. 2, pp. 120–136, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Doulatov, F. Notta, K. Eppert, L. T. Nguyen, P. S. Ohashi, and J. E. Dick, “Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development,” Nature Immunology, vol. 11, no. 7, pp. 585–593, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. R. S. Welner, R. Pelayo, Y. Nagai et al., “Lymphoid precursors are directed to produce dendritic cells as a result of TLR9 ligation during herpes infection,” Blood, vol. 112, no. 9, pp. 3753–3761, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. J. R. Boiko and L. Borghesi, “Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells,” Cytokine, vol. 57, no. 1, pp. 1–8, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. E. Vadillo and R. Pelayo, “Toll-like receptors in development and function of the hematopoietic system,” Revista de Investigación Clínica, vol. 64, no. 5, pp. 461–476, 2012. View at Google Scholar
  33. H. Hock, M. J. Hamblen, H. M. Rooke et al., “Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells,” Nature, vol. 431, no. 7011, pp. 1002–1007, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Zeng, R. Yücel, C. Kosan, L. Klein-Hitpass, and T. Möröy, “Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells,” EMBO Journal, vol. 23, no. 20, pp. 4116–4125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. A. R. Soliera, S. A. Mariani, A. Audia et al., “Gfi-1 inhibits proliferation and colony formation of p210BCR/ABL-expressing cells via transcriptional repression of STAT 5 and Mcl-1,” Leukemia, vol. 26, pp. 1555–1563, 2012. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Flores-Guzmán, E. Flores-Figueroa, G. Martínez-Jaramillo, and H. Mayani, “In vitro characterization of two lineage-negative CD34+ cell-enriched hematopoietic cell populations from human UC blood,” Cytotherapy, vol. 7, no. 4, pp. 334–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Flores-Guzmn, E. Flores-Figueroa, J. J. Montesinos et al., “Individual and combined effects of mesenchymal stromal cells and recombinant stimulatory cytokines on the in vitro growth of primitive hematopoietic cells from human umbilical cord blood,” Cytotherapy, vol. 11, no. 7, pp. 886–896, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Martínez-Jaramillo, J. Vela-Ojeda, E. Sánchez-Valle, J. J. Montesinos, and H. Mayani, “In vitro functional alterations in the hematopoietic system of adult patients with acute lymphoblastic leukemia,” Leukemia Research, vol. 31, no. 1, pp. 83–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Dorantes-Acosta, A. Chávez-González, J. I. Santos, A. Medina-Sanson, and H. Mayani, “Defective in vitro growth of primitive hematopoietic cells from pediatric patients with acute myeloid leukemia,” Pediatric Blood and Cancer, vol. 51, no. 6, pp. 741–746, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Montesinos, E. Sánchez-Valle, E. Flores-Figueroa et al., “Deficient proliferation and expansion in vitro of two bone marrow cell populations from patients with acute myeloid leukemia in response to hematopoietic cytokines,” Leukemia and Lymphoma, vol. 47, no. 7, pp. 1379–1386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Chávez-González, A. Rosas-Cabral, J. Vela-Ojeda, J. C. González, and H. Mayani, “Severe functional alterations in vitro in CD34+ cell subpopulations from patients with chronic myeloid leukemia,” Leukemia Research, vol. 28, no. 6, pp. 639–647, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Seita and I. L. Weissman, “Hematopoietic stem cell: self-renewal versus differentiation,” Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol. 2, no. 6, pp. 640–653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Passegué, A. J. Wagers, S. Giuriato, W. C. Anderson, and I. L. Weissman, “Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates,” Journal of Experimental Medicine, vol. 202, no. 11, pp. 1599–1611, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Ezoe, I. Matsumura, Y. Satoh, H. Tanaka, and Y. Kanakura, “Cell cycle regulation in hematopoietic stem/progenitor cells,” Cell Cycle, vol. 3, no. 3, pp. 314–318, 2004. View at Google Scholar · View at Scopus
  45. T. Taniguchi, H. Endo, N. Chikatsu et al., “Expression of p21(Cip1/Waf1/Sdi1) and p27(Kip1) cyclin-dependent kinase inhibitors during human hematopoiesis,” Blood, vol. 93, no. 12, pp. 4167–4178, 1999. View at Google Scholar · View at Scopus
  46. R. Steinman, B. Yaroslavskiy, J. P. Goff, S. M. Alber, and S. C. Watkins, “Cdk-inhibitors and exit from quiescence in primitive haematopoietic cell subsets,” British Journal of Haematology, vol. 124, no. 3, pp. 358–365, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Satoh, I. Matsumura, H. Tanaka et al., “Roles for c-Myc in self-renewal of hematopoietic stem cells,” Journal of Biological Chemistry, vol. 279, no. 24, pp. 24986–24993, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. L.-L. Smith, J. Yeung, B. B. Zeisig et al., “Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells,” Cell Stem Cell, vol. 8, no. 6, pp. 649–662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. Orelio and E. Dzierzak, “Bcl-2 expression and apoptosis in the regulation of hematopoietic stem cells,” Leukemia and Lymphoma, vol. 48, no. 1, pp. 16–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. Y. Liu, S. E. Elf, T. Asai et al., “The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior,” Cell Cycle, vol. 8, no. 19, pp. 3120–3124, 2009. View at Google Scholar · View at Scopus
  51. J. Zhang, J. C. Grindley, T. Yin et al., “PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention,” Nature, vol. 441, no. 7092, pp. 518–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. K. Miyamoto, K. Y. Araki, K. Naka et al., “Foxo3a is essential for maintenance of the hematopoietic stem cell pool,” Cell Stem Cell, vol. 1, no. 1, pp. 101–112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Haddad, F. Pflumio, I. Vigon et al., “The HOXB4 homeoprotein differentially promotes ex vivo expansion of early human lymphoid progenitors,” Stem Cells, vol. 26, no. 2, pp. 312–322, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. H. Li, M. Ji, K. D. Klarmann, and J. R. Keller, “Repression of Id2 expression by Gfi-1 is required for B-cell and myeloid development,” Blood, vol. 116, no. 7, pp. 1060–1069, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Möröy and C. Khandanpour, “Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation,” Seminars in Immunology, vol. 23, no. 5, pp. 368–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. M. R. Lidonnici, A. Audia, A. R. Soliera et al., “Expression of the transcriptional repressor Gfi-1 is regulated by C/EBPα and is involved in its proliferation and colony formation-inhibitory effects in p210BCR/ABL-expressing cells,” Cancer Research, vol. 70, no. 20, pp. 7949–7959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  57. M. de la Luz Sierra, P. Gasperini, P. J. McCormick, J. Zhu, and G. Tosato, “Transcription factor Gfi-1 induced by G-CSF is a negative regulator of CXCR4 in myeloid cells,” Blood, vol. 110, no. 7, pp. 2276–2285, 2007. View at Publisher · View at Google Scholar · View at Scopus