Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 362163, 9 pages
http://dx.doi.org/10.1155/2013/362163
Research Article

Mesoporous Silicon Microparticles Enhance MHC Class I Cross-Antigen Presentation by Human Dendritic Cells

1EM-Silicon Nano-Technologies SL, Nat. R. Cisternas 8, 46010 Valencia, Spain
2Immunology Department, Faculty of Medicine, Complutense University, Avenida Complutense s/n, 28040 Madrid, Spain
3Cell Biology Department, Faculty of Medicine, Complutense University, Avenida Complutense s/n, 28040 Madrid, Spain

Received 25 June 2013; Accepted 15 September 2013

Academic Editor: Masha Fridkis-Hareli

Copyright © 2013 A. Jiménez-Periáñez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Yamada, T. Sasada, M. Noguchi, and K. Itoh, “Next-generation peptide vaccines for advanced cancer,” Cancer Science, vol. 104, no. 1, pp. 15–21, 2013. View at Publisher · View at Google Scholar
  2. A. Thakur, L. E. Pedersen, and G. Jungersen, “Immune markers and correlates of protection for vaccine induced immune responses,” Vaccine, vol. 30, no. 33, pp. 4907–4920, 2012. View at Publisher · View at Google Scholar
  3. J. D. Altman, P. A. H. Moss, P. J. R. Goulder et al., “Phenotypic analysis of antigen-specific T lymphocytes,” Science, vol. 274, no. 5284, pp. 94–96, 1996. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. McMichael and S. L. Rowland-Jones, “Cellular immune responses to HIV,” Nature, vol. 410, no. 6831, pp. 980–987, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. S. A. Plotkin and S. L. Plotkin, “The development of vaccines: how the past led to the future,” Nature Reviews Microbiology, vol. 9, no. 12, pp. 889–893, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. A. Hubbell, S. N. Thomas, and M. A. Swartz, “Materials engineering for immunomodulation,” Nature, vol. 462, no. 7272, pp. 449–460, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. J. Hanes, J. L. Cleland, and R. Langer, “New advances in microsphere-based single-dose vaccines,” Advanced Drug Delivery Reviews, vol. 28, no. 1, pp. 97–119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. J. J. Moon, B. Huang, and D. J. Irvine, “Engineering nano- and microparticles to tune immunity,” Advanced Materials, vol. 24, no. 28, pp. 3724–3746, 2012. View at Publisher · View at Google Scholar
  9. R. Audran, K. Peter, J. Dannull et al., “Encapsulation of peptides in biodegradable microspheres prolongs their MHC class-I presentation by dendritic cells and macrophages in vitro,” Vaccine, vol. 21, no. 11-12, pp. 1250–1255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. M. Steinman and J. Banchereau, “Taking dendritic cells into medicine,” Nature, vol. 449, no. 7161, pp. 419–426, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. O. P. Joffre, E. Segura, A. Savina, and S. Amigorena, “Cross-presentation by dendritic cells,” Nature Reviews Immunology, vol. 12, no. 8, pp. 557–569, 2012. View at Publisher · View at Google Scholar
  12. A. V. Sapelkin, S. C. Bayliss, B. Unal, and A. Charalambou, “Interaction of B50 rat hippocampal cells with stain-etched porous silicon,” Biomaterials, vol. 27, no. 6, pp. 842–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. E. Serda, J. Gu, R. C. Bhavane et al., “The association of silicon microparticles with endothelial cells in drug delivery to the vasculature,” Biomaterials, vol. 30, no. 13, pp. 2440–2448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. O. Worsfold, N. H. Voelcker, and T. Nishiya, “Biosensing using lipid bilayers suspended on porous silicon,” Langmuir, vol. 22, no. 16, pp. 7078–7083, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Fan, G. R. Akkaraju, E. F. Couch, L. T. Canham, and J. L. Coffer, “The role of nanostructured mesoporous silicon in discriminating in vitro calcification for electrospun composite tissue engineering scaffolds,” Nanoscale, vol. 3, no. 2, pp. 354–361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Salonen, L. Laitinen, A. M. Kaukonen et al., “Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs,” Journal of Controlled Release, vol. 108, no. 2-3, pp. 362–374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. A. Prestidge, T. J. Barnes, C. Lau, C. Barnett, A. Loni, and L. Canham, “Mesoporous silicon: a platform for the delivery of therapeutics,” Expert Opinion on Drug Delivery, vol. 4, no. 2, pp. 101–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Tasciotti, X. Liu, R. Bhavane et al., “Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications,” Nature Nanotechnology, vol. 3, no. 3, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. E. Pastor, E. Matveeva, A. Valle-Gallego, F. M. Goycoolea, and M. Garcia-Fuentes, “Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles,” Colloids and Surfaces B, vol. 88, no. 2, pp. 601–609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Lehmann, Electrochemistry of Silicon, Wiley-VCH, New York, NY, USA, 2002.
  21. J. R. Currier, E. G. Kuta, E. Turk et al., “A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays,” Journal of Immunological Methods, vol. 260, no. 1-2, pp. 157–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Sun, N. Fang, B. G. Trewyn et al., “Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy,” Analytical and Bioanalytical Chemistry, vol. 391, no. 6, pp. 2119–2125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. R. E. Serda, S. Ferrati, B. Godin, E. Tasciotti, X. Liu, and M. Ferrari, “Mitotic trafficking of silicon microparticles,” Nanoscale, vol. 1, no. 2, pp. 250–259, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. E. Serda, A. MacK, M. Pulikkathara et al., “Cellular association and assembly of a multistage delivery system,” Small, vol. 6, no. 12, pp. 1329–1340, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Diwan, P. Elamanchili, H. Lane, A. Gainer, and J. Samuel, “Biodegradable nanoparticle mediated antigen delivery to human cord blood derived dendritic cells for induction of primary T cell responses,” Journal of Drug Targeting, vol. 11, no. 8–10, pp. 495–507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Elamanchili, M. Diwan, M. Cao, and J. Samuel, “Characterization of poly(D,L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells,” Vaccine, vol. 22, no. 19, pp. 2406–2412, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. I. M. Meraz, B. Melendez, J. Gu et al., “Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node,” Molecular Pharmaceutics, vol. 9, no. 7, pp. 2049–2062, 2012. View at Publisher · View at Google Scholar
  28. P. A. Reche, V. Soumelis, D. M. Gorman et al., “Human thymic stromal lymphopoietin preferentially stimulates myeloid cells,” Journal of Immunology, vol. 167, no. 1, pp. 336–343, 2001. View at Google Scholar · View at Scopus