Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 476856, 12 pages
http://dx.doi.org/10.1155/2013/476856
Research Article

Role of Toll-Like Receptor 4 on Lupus Lung Injury and Atherosclerosis in LPS-Challenge ApoE−/− Mice

1Cardiovascular Department, Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, China
2Rheumatism Department, Second Affiliated Hospital and Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian 362000, China
3Cardiology Department, Second Affiliated Hospital of Fujian Medical University Zhongshan North Road 34, Quanzhou, Fujian 362000, China
4Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China

Received 4 May 2013; Revised 8 July 2013; Accepted 15 July 2013

Academic Editor: T. Nakayama

Copyright © 2013 Jing-qin Ni et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Fernández-Nebro, S. Marsal, W. Chatham et al., “Systemic lupus erythematosus: genomics, mechanisms, and therapies,” Clinical and Developmental Immunology, vol. 2012, Article ID 926931, 2 pages, 2012. View at Publisher · View at Google Scholar
  2. R. Bessant, R. Duncan, G. Ambler et al., “Prevalence of conventional and lupus-specific risk factors for cardiovascular disease in patients with systemic lupus erythematosus: a case-control study,” Arthritis Care and Research, vol. 55, no. 6, pp. 892–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. T. T. Barker, P. Y. Lee, K. M. Kelly-Scumpia et al., “Pathogenic role of B cells in the development of diffuse alveolar hemorrhage induced by pristane,” Laboratory Investigation, vol. 91, no. 10, pp. 1540–1550, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Sireci, G. Guggino, A. R. Giardina, F. Ciccia, G. Triolo, and F. Dieli, “Are toll-like receptors and decoy receptors involved in the immunopathogenesis of systemic lupus erythematosus and lupus-like syndromes?” Clinical and Developmental Immunology, vol. 2012, Article ID 135932, 5 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. C. Croca and A. Rahman, “Imaging assessment of cardiovascular disease in systemic lupus erythematosus,” Clinical and Developmental Immunology, vol. 2012, Article ID 694143, 7 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. T.-P. Lee, S.-J. Tang, M.-F. Wu, Y.-C. Song, C.-L. Yu, and K.-H. Sun, “Transgenic overexpression of anti-double-stranded DNA autoantibody and activation of Toll-like receptor 4 in mice induce severe systemic lupus erythematosus syndromes,” Journal of Autoimmunity, vol. 35, no. 4, pp. 358–367, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Liu, Y. Yang, J. Dai et al., “TLR4 up-regulation at protein or gene level is pathogenic for lupus-like autoimmune disease,” Journal of Immunology, vol. 177, no. 10, pp. 6880–6888, 2006. View at Google Scholar · View at Scopus
  8. M. A. Ostos, D. Recalde, M. M. Zakin, and D. Scott-Algara, “Implication of natural killer T cells in atherosclerosis development during a LPS-induced chronic inflammation,” FEBS Letters, vol. 519, no. 1–3, pp. 23–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. K. S. Michelsen, M. H. Wong, P. K. Shah et al., “Lack of toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 29, pp. 10679–10684, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. W. Yuehai, H. Ziyang, L. Huixia et al., “Apolipoprotein E-knockout mice show increased titers of serum anti-nuclear and anti-dsDNA antibodies,” Biochemical and Biophysical Research Communications, vol. 423, no. 4, pp. 805–812, 2012. View at Google Scholar
  11. D. Massaro and G. D. Massaro, “Apoetm1Unc mice have impaired alveologenesis, low lung function, and rapid loss of lung function,” American Journal of Physiology, vol. 294, no. 5, pp. L991–L997, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Xianglan, M. P. Vitek, T. Alan et al., “Apolipoprotein mimetic peptides: a new approach for the treatment of asthma,” Frontiers in Pharmacology, vol. 3, article 37, 2012. View at Google Scholar
  13. S. D. Nandedkar, D. Weihrauch, H. Xu et al., “D-4F, an apoA-1 mimetic, decreases airway hyperresponsiveness, inflammation, and oxidative stress in a murine model of asthma,” Journal of Lipid Research, vol. 52, no. 3, pp. 499–508, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Jofre-Monseny, A.-M. Minihane, and G. Rimbach, “Impact of apoE genotype on oxidative stress, inflammation and disease risk,” Molecular Nutrition and Food Research, vol. 52, no. 1, pp. 131–145, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. M. Herndon, Y.-T. Juang, E. E. Solomou, S. W. Rothwell, M. F. Gourley, and G. C. Tsokos, “Direct transfer of p65 into T lymphocytes from systemic lupus erythematosus patients leads to increased levels of interleukin-2 promoter activity,” Clinical Immunology, vol. 103, no. 2, pp. 145–153, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Enzler, G. Bonizzi, G. Silverman et al., “Alternative and classical NF-κB signaling retain autoreactive B cells in the splenic marginal zone and result in lupus-like disease,” Immunity, vol. 25, no. 3, pp. 403–415, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E.-Y. Moon, Y.-S. Lee, W. S. Choi, and M.-H. Lee, “Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages,” Experimental Cell Research, vol. 317, no. 17, pp. 2447–2455, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S.-J. Kim, J.-H. Park, K.-H. Kim et al., “Effect of NF-κB decoy oligodeoxynucleotide on LPS/high-fat diet-induced atherosclerosis in an animal model,” Basic and Clinical Pharmacology and Toxicology, vol. 107, no. 6, pp. 925–930, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Vink, A. H. Schoneveld, J. J. Van der Meer et al., “In vivo evidence for a role of toll-like receptor 4 in the development of intimal lesions,” Circulation, vol. 106, no. 15, pp. 1985–1990, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. S. E. Hussey, H. Liang, S. R. Costford et al., “TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid induced inflammation and insulin resistance in muscle cells,” Bioscience Reports, vol. 33, no. 1, pp. 37–47, 2012. View at Google Scholar
  21. K. Takashima, N. Matsunaga, M. Yoshimatsu et al., “Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model,” British Journal of Pharmacology, vol. 157, no. 7, pp. 1250–1262, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kyaw, P. Cui, C. Tay et al., “BAFF receptor mAb treatment ameliorates development and progression of atherosclerosis in hyperlipidemic ApoE-/- mice,” PLoS One, vol. 8, no. 4, article e60430, 2013. View at Google Scholar
  23. J. M. Davies, J. MacSharry, and F. Shanahan, “Differential regulation of Toll-like receptor signalling in spleen and Peyer's patch dendritic cells,” Immunology, vol. 131, no. 3, pp. 438–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. B. H. Veeresh, S. V. Hiremath, S. S. Patiln et al., “Tissues-specific mRNA expression pattern of swine toll-like receptors (TLRs) 1–10,” Journal of Veterinary Science and Technology, vol. 1, no. 2, pp. 14–23, 2012. View at Google Scholar
  25. S.-L. Yu, W.-P. Kuan, C.-K. Wong, E. K. Li, and L.-S. Tam, “Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus,” Clinical and Developmental Immunology, vol. 2012, Article ID 715190, 14 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. A. La Cava, “Anticytokine therapies in systemic lupus erythematosus,” Immunotherapy, vol. 2, no. 4, pp. 575–582, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Ali, M. Middleton, E. Puré, and D. J. Rader, “Apolipoprotein E suppresses the type I inflammatory response in vivo,” Circulation Research, vol. 97, no. 9, pp. 922–927, 2005. View at Publisher · View at Google Scholar · View at Scopus