Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 608654, 10 pages
http://dx.doi.org/10.1155/2013/608654
Review Article

Microglial Dysregulation in Psychiatric Disease

1Department of Psychiatry, Yale University School of Medicine, 34 Park Street, W315, New Haven, CT 06519, USA
2Child Study Center, Yale University School of Medicine, 34 Park Street, W315, New Haven, CT 06519, USA
3Department of Psychology, Yale University School of Medicine, 34 Park Street, W315, New Haven, CT 06519, USA

Received 11 March 2013; Accepted 26 March 2013

Academic Editor: Luisa Minghetti

Copyright © 2013 Luciana Romina Frick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Paolicelli, G. Bolasco, F. Pagani et al., “Synaptic pruning by microglia is necessary for normal brain development,” Science, vol. 333, no. 6048, pp. 1456–1458, 2011. View at Google Scholar
  2. K. Ji, G. Akgul, L. P. Wollmuth, and S. E. Tsirka, “Microglia actively regulate the number of functional synapses,” PLOS ONE, vol. 8, no. 2, Article ID e56293, 2013. View at Google Scholar
  3. D. P. Schafer, E. K. Lehrman, A. G. Kautzman et al., “Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner,” Neuron, vol. 74, no. 4, pp. 691–705, 2012. View at Google Scholar
  4. A. Sierra, J. M. Encinas, J. J. P. Deudero et al., “Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis,” Cell Stem Cell, vol. 7, no. 4, pp. 483–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Duman and G. Aghajanian, “Synaptic dysfunction in depression: potential therapeutic targets,” Science, vol. 338, no. 6103, pp. 68–72, 2012. View at Google Scholar
  6. J. T. Coyle, A. Basu, M. Benneyworth, D. Balu, and G. Konopaske, “Glutamatergic synaptic dysregulation in schizophrenia: therapeutic implications,” Handbook of Experimental Pharmacology, no. 213, pp. 267–295, 2012. View at Google Scholar
  7. H. Eyre and B. T. Baune, “Neuroplastic changes in depression: a role for the immune system,” Psychoneuroendocrinology, vol. 37, no. 9, pp. 1397–1416, 2012. View at Google Scholar
  8. H. Kettenmann, U. K. Hanisch, M. Noda, and A. Verkhratsky, “Physiology of microglia,” Physiology Review, vol. 91, no. 2, pp. 461–553, 2011. View at Publisher · View at Google Scholar
  9. M. E. Trenblay, B. Stevens, A. Sierra, H. Wake, A. Bessis, and A. Nimmerjahn, “The role of microglia in the healthy brain,” The Journal of Neuroscience., vol. 31, no. 45, pp. 16064–16069, 2011. View at Google Scholar
  10. A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, “Neuroscience: resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314–1318, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. N. Stence, M. Waite, and M. E. Dailey, “Dynamics of microglial activation: a confocal time-lapse analysis in hippocampal slices,” Glia, vol. 33, no. 3, pp. 256–266, 2001. View at Google Scholar
  12. S. D. Bilbo and J. M. Schwarz, “Early-life programming of later-life brain and behavior: a critical role for the immune system,” Frontiers in Behavioral Neuroscience, vol. 3, p. 14, 2009. View at Google Scholar
  13. M. Czeh, P. Gressens, and A. M. Kaindl, “The yin and yang of microglia,” Developmental Neuroscience, vol. 33, no. 3-4, pp. 199–209, 2011. View at Google Scholar
  14. A. D. Reynolds, R. Banerjee, J. Liu, H. E. Gendelman, and R. L. Mosley, “Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease,” Journal of Leukocyte Biology, vol. 82, no. 5, pp. 1083–1094, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Liu, N. Gong, X. Huang, A. D. Reynolds, R. L. Mosley, and H. E. Gendelman, “Neuromodulatory activities of CD4+CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration,” Journal of Immunology, vol. 182, no. 6, pp. 3855–3865, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Kipnis and M. Schwartz, “Controlled autoimmunity in CNS maintenance and repair: naturally occurring CD4+CD25+ regulatory T-cells at the crossroads of health and disease,” NeuroMolecular Medicine, vol. 7, no. 3, pp. 197–206, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Avidan, J. Kipnis, O. Butovsky, R. R. Caspi, and M. Schwartz, “Vaccination with autoantigen protects against aggregated β-amyloid and glutamate toxicity by controlling microglia: effect of CD4+CD25+ T cells,” European Journal of Immunology, vol. 34, no. 12, pp. 3434–3445, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. O. Butovsky, A. E. Talpalar, K. Ben-Yaakov, and M. Schwartz, “Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective,” Molecular and Cellular Neuroscience, vol. 29, no. 3, pp. 381–393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Maiorino, R. Khorooshi, F. Ruffini et al., “Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia,” Gene Therapy, 2012. View at Publisher · View at Google Scholar
  20. X. Zhou, B. Spittau, and K. Krieglstein, “TGFβ signalling plays an important role in IL4-induced alternative activation of microglia,” Journal of Neuroinflammation, vol. 9, p. 210, 2012. View at Publisher · View at Google Scholar
  21. A. E. Hinojosa, B. Garcia-Bueno, J. C. Leza, and J. L. M. Madrigal, “CCL2/MCP-1 modulation of microglial activation and proliferation,” Journal of Neuroinflammation, vol. 8, article 77, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Yang, Y. Meng, W. Li et al., “Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism,” Brain Pathology, vol. 21, no. 3, pp. 279–297, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Prinz and J. Priller, “Tickets to the brain: role of CCR2 and CX3CR1 in myeloid cell entry in the CNS,” Journal of Neuroimmunology, vol. 224, no. 1-2, pp. 80–84, 2010. View at Publisher · View at Google Scholar
  24. J. T. Rogers, J. M. Morganti, A. D. Bachstetter et al., “CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity,” Journal of Neuroscience, vol. 31, no. 45, pp. 16241–16250, 2011. View at Google Scholar
  25. A. D. Bachstetter, J. M. Morganti, J. Jernberg et al., “Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats,” Neurobiology of Aging, vol. 32, no. 11, pp. 2030–2044, 2011. View at Google Scholar
  26. R. Dantzer, “Cytokine, sickness behavior, and depression,” Immunology and Allergy Clinics of North America, vol. 29, no. 2, pp. 247–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Udina, P. Castellvi, J. Moreno-España et al., “Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis,” Journal of Clinical Psychiatry, vol. 73, no. 8, pp. 1128–1138, 2012. View at Google Scholar
  28. T. A. Bayer, R. Buslei, L. Havas, and P. Falkai, “Evidence for activation of microglia in patients with psychiatric illnesses,” Neuroscience Letters, vol. 271, no. 2, pp. 126–128, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Steiner, H. Bielau, R. Brisch et al., “Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide,” Journal of Psychiatric Research, vol. 42, no. 2, pp. 151–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Dean, A. S. Gibbons, N. Tawadros, L. Brooks, I. P. Everall, and E. Scarr, “Different changes in cortical tumor necrosis factor-α-related pathways in schizophrenia and mood disorders,” Molecular Psychiatry, 2012. View at Publisher · View at Google Scholar
  31. J. Steiner, M. Walter, T. Gos et al., “Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission?” Journal of Neuroinflammation, vol. 8, p. 94, 2011. View at Google Scholar
  32. K. Hashimoto, “Emerging role of glutamate in the pathophysiology of major depressive disorder,” Brain Research Reviews, vol. 61, no. 2, pp. 105–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. G. Sanacora, G. Treccani, and M. Popoli, “Towars a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders,” Neuropharmacology, vol. 62, no. 1, pp. 63–77, 2012. View at Publisher · View at Google Scholar
  34. D. C. Mathews, I. D. Henter, and C. A. Zarate, “Targeting the glutamatergic system to treat major depressive disorder: rationale and progress to date,” Drugs, vol. 72, no. 10, pp. 1313–1333, 2012. View at Google Scholar
  35. G. J. Guillemin, “Quinolinic acid, the inescapable neurotoxin,” FEBS Journal, vol. 279, no. 8, pp. 1356–1365, 2012. View at Google Scholar
  36. M. Maes, Z. Fisar, M. Medina, G. Scapagnini, G. Nowak, and M. Berk, “New drug targets in depression: inflammatory, cell-mediated immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. And new drug candidates-Nrf2 activators and GSK-3 inhibitors,” Inflammopharmacology, vol. 20, no. 3, pp. 127–150, 2012. View at Google Scholar
  37. C. Pittenger and R. S. Duman, “Stress, depression, and neuroplasticity: a convergence of mechanisms,” Neuropsychopharmacology, vol. 33, no. 1, pp. 88–109, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Hinwood, J. Morandini, T. A. Day, and F. R. Walker, “Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex,” Cerebral Cortex, vol. 22, no. 6, pp. 1442–1454, 2012. View at Google Scholar
  39. S. Arakawa, Y. Shirayama, Y. Fujita et al., “Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline,” Pharmacology Biochemistry and Behavior, vol. 100, no. 3, pp. 601–606, 2011. View at Google Scholar
  40. E. S. Wohleb, M. L. Hanke, A. W. Corona et al., “β-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat,” Journal of Neuroscience, vol. 31, no. 17, pp. 6277–6288, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. E. S. Wohleb, A. M. Fenn, A. M. Pacenta, N. D. Powell, J. F. Sheridan, and J. P. Godbout, “Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice,” Psychoneuroendocrinology, vol. 37, no. 9, pp. 1491–1505, 2012. View at Google Scholar
  42. L. Sominsky, A. K. Walker, L. K. Ong, R. J. Tynan, F. R. Walker, and D. M. Hodgson, “Increased microglial activation in the rat brain following neonatal exposure to a bacterial mimetic,” Behavioral Brain Research, vol. 226, no. 1, pp. 351–356, 2012. View at Google Scholar
  43. K. C. Wang, L. W. Fan, A. Kaizaki, Y. Pang, Z. Cai, and L. T. Tien, “Neonatal lipopolysaccharide exposure induces long-lasting learning impairment, less anxiety-like response and hippocampal injury in adult rats,” Neuroscience, vol. 234, pp. 146–157, 2013. View at Google Scholar
  44. A. W. Corona, Y. Huang, J. C. O'Connor et al., “Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide,” Journal of Neuroinflammation, vol. 7, article 93, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. W. Corona, D. M. Norden, J. P. Skendelas et al., “Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX3CR1)-deficient mice,” Brain Behavior and Immunity, 2012. View at Publisher · View at Google Scholar
  46. Y. Chang, J. J. Lee, C. Y. Hsieh, G. Hsiao, D. S. Chou, and J. R. Sheu, “Inhibitory effects of ketamine on lipopolysaccharide-induced microglial activation,” Mediators of Inflammation, vol. 2009, Article ID 705379, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Liu, Z. Wang, S. Liu, F. Wang, S. Zhao, and A. Hao, “Anti-inflammatory effects of fluoxetine in lipopolysaccharide(LPS)-stimulated microglial cells,” Neuropharmacology, vol. 61, no. 4, pp. 592–599, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Obuchowicz, J. Kowalski, K. Labuzek, R. Krysiak, J. Pendzich, and Z. S. Herman, “Amitriptyline and nortriptyline inhibit interleukin-1β and tumour necrosis factor-α release by rat mixed glial and microglial cell cultures,” International Journal of Neuropsychopharmacology, vol. 9, no. 1, pp. 27–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Hashioka, A. Klegeris, A. Monji et al., “Antidepressants inhibit interferon-γ-induced microglial production of IL-6 and nitric oxide,” Experimental Neurology, vol. 206, no. 1, pp. 33–42, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Horikawa, T. A. Kato, Y. Mizoguchi et al., “Inhibitory effects of SSRIs on IFN-γ induced microglial activation through the regulation of intracellular calcium,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 7, pp. 1306–1316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. R. J. Tynan, J. Weidenhofer, M. Hinwood, M. J. Cairns, T. A. Day, and F. R. Walker, “A comparative examination of the anti-inflammatory effects of SSRI and SNRI antidepressants on LPS stimulated microglia,” Brain Behavior and Immunity, vol. 26, no. 3, pp. 469–479, 2012. View at Google Scholar
  52. F. Zhang, H. Zhou, B. C. Wilson, J. S. Shi, J. S. Hong, and H. M. Gao, “Fluoxetine protects neurons against microglial activation-mediated neurotoxicity,” Parkinsonism and Related Disorders, vol. 18, supplement 1, pp. 213–217, 2012. View at Google Scholar
  53. H. S. Chung, H. Kim, and H. Bae, “Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-κB pathway in lipopolysaccharide-activated microglia cells,” Neurochemical Research, vol. 37, no. 10, pp. 2117–2124, 2012. View at Google Scholar
  54. G. Anderson and M. Maes, “Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 42, pp. 5–19, 2013. View at Google Scholar
  55. H. Hagberg, P. Gressens, and C. Mallard, “Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults,” Annals of Neurology, vol. 71, no. 4, pp. 444–457, 2012. View at Google Scholar
  56. T. Togo, H. Akiyama, H. Kondo et al., “Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases,” Brain Research, vol. 885, no. 1, pp. 117–121, 2000. View at Publisher · View at Google Scholar · View at Scopus
  57. T. Wierzba-Bobrowicz, E. Lewandowska, E. Kosno-Kruszewska, W. Lechowicz, E. Pasennik, and B. Schmidt-Sidor, “Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics,” Folia Neuropathologica, vol. 42, no. 3, pp. 157–165, 2004. View at Google Scholar · View at Scopus
  58. T. Wierzba-Bobrowicz, E. Lewandowska, W. Lechowicz, T. Stepień, and E. Pasennik, “Quantitative analysis of activated microglia, ramified and damage of processes in the frontal and temporal lobes of chronic schizophrenics,” Folia Neuropathologica, vol. 43, no. 2, pp. 81–89, 2005. View at Google Scholar · View at Scopus
  59. N. A. Uranova, I. S. Zimina, O. V. Vikhreva, N. O. Krukov, V. I. Rachmanova, and D. D. Orlovskaya, “Ultrastructural damage of capillaries in the neocortex in schizophrenia,” The World Journal of Biological Psychiatry, vol. 11, no. 3, pp. 567–578, 2010. View at Google Scholar · View at Scopus
  60. S. G. Fillman, N. Cloonan, V. S. Catts et al., “Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia,” Molecular Psychiatry, vol. 18, no. 2, pp. 206–214, 2013. View at Google Scholar
  61. K. Radewicz, L. J. Garey, S. M. Gentleman, and R. Reynolds, “Increase in HLA-DR immunoreactive microglia in frontal and temporal cortex of chronic schizophrenics,” Journal of Neuropathology and Experimental Neurology, vol. 59, no. 2, pp. 137–150, 2000. View at Google Scholar · View at Scopus
  62. J. Steiner, C. Mawrin, A. Ziegeler et al., “Distribution of HLA-DR-positive microglia in schizophrenia reflects impaired cerebral lateralization,” Acta Neuropathologica, vol. 112, no. 3, pp. 305–316, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Busse, M. Busse, K. Schiltz et al., “Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations?” Brain Behavior and Immunity, vol. 26, no. 8, pp. 1273–1279, 2012. View at Google Scholar
  64. R. C. Drexhage, T. A. Hoogenboezem, D. Cohen et al., “An activated set point of T-cell and monocyte inflammatory networks in recent-onset schizophrenia patients involves both pro- and anti-inflammatory forces,” International Journal of Neuropsychopharmacology, vol. 14, no. 6, pp. 746–755, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. B. N. van Berckel, M. G. Bossong, R. Boellaard et al., “Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study,” Biological Psychiatry, vol. 64, no. 9, pp. 820–822, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. Doorduin, E. F. J. de Vries, A. T. M. Willemsen, J. C. de Groot, R. A. Dierckx, and H. C. Klein, “Neuroinflammation in schizophrenia-related psychosis: a PET study,” Journal of Nuclear Medicine, vol. 50, no. 11, pp. 1801–1807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. D. Sargin, I. Hassouna, S. Sperling, A. L. Sirén, and H. Ehrenreich, “Uncoupling of neurodegeneration and gliosis in a murine model of juvenile cortical lesion,” Glia, vol. 57, no. 7, pp. 693–702, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. G. Juckel, M. P. Manitz, M. Brüne, A. Friebe, M. T. Heneka, and R. J. Wolf, “Microglial activation in a neuroinflammational animal model of schizophrenia—a pilot study,” Schizophrenia Research, vol. 131, no. 1–3, pp. 96–100, 2011. View at Google Scholar
  69. U. Ratnayake, T. A. Quinn, M. Castillo-Melendez, H. Dickinson, and D. W. Walker, “Behaviour and hippocampus-specific changes in spiny mouse neonates after treatment of the mother with the viral-mimetic Poly I:C at mid-pregnancy,” Brain Behavior and Immunity, vol. 26, no. 8, pp. 1288–1299, 2012. View at Google Scholar
  70. K. Liaury, T. Miyaoka, T. Tsumori et al., “Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model,” Journal of Neuroinflammation, vol. 9, p. 56, 2012. View at Google Scholar
  71. S. Seshadri, A. Kamiya, Y. Yokota et al., “Disrupted-in-Schizophrenia-1 expression is regulated by β-site amyloid precursor protein cleaving enzyme-1-neuregulin cascade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 12, pp. 5622–5627, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. Q. Bian, T. Kato, A. Monji et al., “The effect of atypical antipsychotics, perospirone, ziprasidone and quetiapine on microglial activation induced by interferon-γ,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 32, no. 1, pp. 42–48, 2008. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Hou, C. F. Wu, J. Y. Yang et al., “Effects of clozapine, olanzapine and haloperidol on nitric oxide production by lipopolysaccharide-activated N9 cells,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 30, no. 8, pp. 1523–1528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. T. Kato, A. Monji, S. Hashioka, and S. Kanba, “Risperidone significantly inhibits interferon-γ-induced microglial activation in vitro,” Schizophrenia Research, vol. 92, no. 1–3, pp. 108–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Kato, Y. Mizoguchi, A. Monji et al., “Inhibitory effects of aripiprazole on interferon-γ-induced microglial activation via intracellular Ca2+ regulation in vitro,” Journal of Neurochemistry, vol. 106, no. 2, pp. 815–825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. T. A. Kato, A. Monji, K. Yasukawa et al., “Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)-stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia,” Schizophrenia Research, vol. 129, no. 2-3, pp. 172–182, 2011. View at Publisher · View at Google Scholar · View at Scopus
  77. L. T. Zheng, J. Hwang, J. Ock, M. G. Lee, W. H. Lee, and K. Suk, “The antipsychotic spiperone attenuates inflammatory response in cultured microglia via the reduction of proinflammatory cytokine expression and nitric oxide production,” Journal of Neurochemistry, vol. 107, no. 5, pp. 1225–1235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. T. Miyaoka, R. Yasukawa, H. Yasuda, M. Hayashida, T. Inagaki, and J. Horiguchi, “Possible antipsychotic effects of minocycline in patients with schizophrenia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 31, no. 1, pp. 304–307, 2007. View at Publisher · View at Google Scholar · View at Scopus
  79. D. L. Kelly, G. Vyas, C. M. Richardson et al., “Adjunct minocycline to clozapine treated patients with persistent schizophrenia symptoms,” Schizophrenia Research, vol. 133, no. 1–3, pp. 257–258, 2011. View at Google Scholar
  80. C. Chaves, C. R. de Marque, L. Wichert-Ana et al., “Functional neuroimaging of minocycline's effect in a patient with schizophrenia,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 34, no. 3, pp. 550–552, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. T. Miyaoka, R. Yasukawa, H. Yasuda, M. Hayashida, T. Inagaki, and J. Horiguchi, “Minocycline as adjunctive therapy for schizophrenia: an open-label study,” Clinical Neuropharmacology, vol. 31, no. 5, pp. 287–292, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. T. Miyaoka, R. Wake, M. Furuya et al., “Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 37, no. 2, pp. 222–226, 2012. View at Google Scholar
  83. Y. Levkovitz, S. Mendlovich, S. Riwkes et al., “A double-blind, randomized study of minocycline for the treatment of negative and cognitive symptoms in early-phase schizophrenia,” Journal of Clinical Psychiatry, vol. 71, no. 2, pp. 138–149, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. B. Chaudhry, J. Hallak, N. Husain et al., “Minocycline benefits negative symptoms in early schizophrenia: a randomised double-blind placebo-controlled clinical trial in patients on standard treatment,” Journal of Psychopharmacology, vol. 26, no. 9, pp. 1185–1193, 2012. View at Google Scholar
  85. D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman, and C. A. Pardo, “Neuroglial activation and neuroinflammation in the brain of patients with autism,” Annals of Neurology, vol. 57, no. 1, pp. 67–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. J. T. Morgan, G. Chana, C. A. Pardo et al., “Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism,” Biological Psychiatry, vol. 68, no. 4, pp. 368–376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. N. A. Tetreault, A. Y. Hakeem, S. Jiang et al., “Microglia in the cerebral cortex in autism,” Journal of Autism and Developmental Disorders, vol. 42, no. 12, pp. 2569–2584, 2012. View at Google Scholar
  88. J. T. Morgan, G. Chana, I. Abramson, K. Semendeferi, E. Courchesne, and I. P. Everall, “Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex in autism,” Brain Research, vol. 1456, pp. 72–81, 2012. View at Google Scholar
  89. K. Suzuki, G. Sugihara, Y. Ouchi et al., “Microglial activation in young adults with autism spectrum disorder,” JAMA Psychiatry, vol. 70, no. 1, pp. 49–58, 2013. View at Google Scholar
  90. Y. Heo, Y. Zhang, D. Gao, V. M. Miller, and D. A. Lawrence, “Aberrant immune responses in a mouse with behavioral disorders,” PLoS ONE, vol. 6, no. 7, Article ID e20912, 2011. View at Google Scholar
  91. S. L. Connors, D. E. Crowell, C. G. Eberhart et al., “β2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins,” Journal of Child Neurology, vol. 20, no. 11, pp. 876–884, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. M. C. Zerrate, M. Pletnikov, S. L. Connors et al., “Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism,” Journal of Pharmacology and Experimental Therapeutics, vol. 322, no. 1, pp. 16–22, 2007. View at Publisher · View at Google Scholar · View at Scopus
  93. D. F. MacFabe, D. P. Cain, K. Rodriguez-Capote et al., “Neurobiological effects of intraventricular propionic acid in rats: possible role of short chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders,” Behavioural Brain Research, vol. 176, no. 1, pp. 149–169, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. D. F. MacFabe, N. E. Cain, F. Boon, K. P. Ossenkopp, and D. P. Cain, “Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder,” Behavioural Brain Research, vol. 217, no. 1, pp. 47–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. I. Maezawa and L. W. Jin, “Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate,” Journal of Neuroscience, vol. 30, no. 15, pp. 5346–5356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. A. Horská, L. Farage, G. Bibat et al., “Brain metabolism in rett syndrome: age, clinical, and genotype correlations,” Annals of Neurology, vol. 65, no. 1, pp. 90–97, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. M. E. Blue, S. Naidu, and M. V. Johnston, “Altered development of glutamate and GABA receptors in the basal ganglia of girls with Rett syndrome,” Experimental Neurology, vol. 156, no. 2, pp. 345–352, 1999. View at Publisher · View at Google Scholar · View at Scopus
  98. L. Wood and G. M. G. Shepherd, “Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome,” Neurobiology of Disease, vol. 38, no. 2, pp. 281–287, 2010. View at Publisher · View at Google Scholar · View at Scopus
  99. R. L. Blaylock and A. Strunecka, “Immune-glutamatergic dysfunction as a central mechanism of the autism spectrum disorders,” Current Medicinal Chemistry, vol. 16, no. 2, pp. 157–170, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. N. C. Derecki, J. C. Cronk, Z. Lu et al., “Wild-type microglia arrest pathology in a mouse model of Rett syndrome,” Nature, vol. 484, no. 7392, pp. 105–109, 2012. View at Google Scholar
  101. S. E. Swedo, A. Schrag, R. Gilbert et al., “Streptococcal infection, Tourette syndrome, and OCD: is there a connection? PANDAS: horse or zebra?” Neurology, vol. 74, no. 17, pp. 1397–1398. View at Publisher · View at Google Scholar
  102. S. Bhattacharyya, S. Khanna, K. Chakrabarty, A. Mahadevan, R. Christopher, and S. K. Shankar, “Anti-brain autoantibodies and altered excitatory neurotransmitters in obsessive-compulsive disorder,” Neuropsychopharmacology, vol. 34, no. 12, pp. 2489–2496, 2009. View at Publisher · View at Google Scholar
  103. J. M. Greer and M. R. Capecchi, “Hoxb8 is required for normal grooming behavior in mice,” Neuron, vol. 33, no. 1, pp. 23–34, 2002. View at Publisher · View at Google Scholar
  104. S. K. Chen, P. Tvrdik, E. Peden et al., “Hematopoietic origin of pathological grooming in Hoxb8 mutant mice,” Cell, vol. 141, no. 5, pp. 775–785, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. J. C. Holstege, W. De Graaff, M. Hossaini et al., “Loss of Hoxb8 alters spinal dorsal laminae and sensory responses in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 17, pp. 6338–6343, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. L. Huber, M. Ferdin, J. Holzmann, J. Stubbusch, and H. Rohrer, “HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system,” Developmental Biology, vol. 363, no. 1, pp. 219–233, 2012. View at Google Scholar
  107. P. S. Knoepfler, D. B. Sykes, M. Pasillas, and M. P. Kamps, “HoxB8 requires its Pbx-interaction motif to block differentiation of primary myeloid progenitors and of most cell line models of myeloid differentiation,” Oncogene, vol. 20, no. 39, pp. 5440–5448, 2001. View at Publisher · View at Google Scholar · View at Scopus
  108. G. G. Wang, K. R. Calvo, M. P. Pasillas, D. B. Sykes, H. Häcker, and M. P. Kamps, “Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8,” Nature Methods, vol. 3, no. 4, pp. 287–293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. M. Rosas, F. Osorio, M. J. Robinson et al., “Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells,” European Journal of Immunology, vol. 41, no. 2, pp. 356–365, 2011. View at Publisher · View at Google Scholar · View at Scopus
  110. A. Morer, W. Chae, O. Henegariu, A. L. M. Bothwell, J. F. Leckman, and I. Kawikova, “Elevated expression of MCP-1, IL-2 and PTPR-N in basal ganglia of Tourette syndrome cases,” Brain, Behavior, and Immunity, vol. 24, no. 7, pp. 1069–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. M. Mizutani, P. A. Pino, N. Saederup, I. F. Charo, R. M. Ransohoff, and A. E. Cardona, “The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood,” Journal of Immunology, vol. 188, no. 1, pp. 29–36, 2012. View at Google Scholar
  112. N. Saederup, A. E. Cardona, K. Croft et al., “Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice,” PLoS ONE, vol. 5, no. 10, Article ID e13693, 2010. View at Publisher · View at Google Scholar · View at Scopus