Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013, Article ID 637649, 8 pages
http://dx.doi.org/10.1155/2013/637649
Review Article

Enumeration and Characterization of Human Memory T Cells by Enzyme-Linked Immunospot Assays

S. S. Virologia Molecolare, S. C. Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Via Taramelli 5, 27100 Pavia, Italy

Received 6 June 2013; Accepted 7 September 2013

Academic Editor: Roslyn Kemp

Copyright © 2013 Sandra A. Calarota and Fausto Baldanti. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. C. Czerkinsky, L. A. Nilsson, and H. Nygren, “A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 109–121, 1983. View at Google Scholar · View at Scopus
  2. C. Czerkinsky, G. Andersson, H.-P. Ekre, L.-A. Nilsson, L. Klareskog, and O. Ouchterlony, “Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of gamma-interferon-secretion cells,” Journal of Immunological Methods, vol. 110, no. 1, pp. 29–36, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. P. V. Lehmann and W. Zhang, “Unique strengths of ELISPOT for T cell diagnostics,” Methods in Molecular Biology, vol. 792, pp. 3–23, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Cox, G. Ferrari, S. A. Kalams et al., “Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials,” AIDS Research and Human Retroviruses, vol. 21, no. 1, pp. 68–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. W. Zhang, R. Caspell, A. Y. Karulin et al., “ELISPOT assays provide reproducible results among different laboratories for T-cell immune monitoring-even in hands of ELISPOT-inexperienced investigators,” Journal of Immunotoxicology, vol. 6, no. 4, pp. 227–234, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Boaz, P. Hayes, T. Tarragona et al., “Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents,” Clinical and Vaccine Immunology, vol. 16, no. 2, pp. 147–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Schroder, P. J. Hertzog, T. Ravasi, and D. A. Hume, “Interferon-γ: an overview of signals, mechanisms and functions,” Journal of Leukocyte Biology, vol. 75, no. 2, pp. 163–189, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Malyguine, S. Strobl, L. Zaritskaya, M. Baseler, and K. Shafer-Weaver, “New approaches for monitoring CTL activity in clinical trials,” Advances in Experimental Medicine and Biology, vol. 601, pp. 273–284, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Boulet, M. L. Ndongala, Y. Peretz et al., “A dual color ELISPOT method for the simultaneous detection of IL-2 and IFN-γ HIV-specific immune responses,” Journal of Immunological Methods, vol. 320, no. 1-2, pp. 18–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Ahlborg and B. Axelsson, “Dual-and triple-color fluorospot,” Methods in Molecular Biology, vol. 792, pp. 77–85, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Rebhahn, C. Bishop, A. A. Divekar et al., “Automated analysis of two- and three-color fluorescent Elispot (Fluorospot) assays for cytokine secretion,” Computer Methods and Programs in Biomedicine, vol. 92, no. 1, pp. 54–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. M. Kaech, E. J. Wherry, and R. Ahmed, “Effector and memory T-cell differentiation: implications for vaccine development,” Nature Reviews Immunology, vol. 2, no. 4, pp. 251–262, 2002. View at Google Scholar · View at Scopus
  13. E. Hammarlund, M. W. Lewis, S. G. Hansen et al., “Duration of antiviral immunity after smallpox vaccination,” Nature Medicine, vol. 9, no. 9, pp. 1131–1137, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. R. R. Amara, P. Nigam, S. Sharma, J. Liu, and V. Bostik, “Long-lived poxvirus immunity, robust CD4 help, and better persistence of CD4 than CD8 T cells,” Journal of Virology, vol. 78, no. 8, pp. 3811–3816, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Sallusto, J. Geginat, and A. Lanzavecchia, “Central memory and effector memory T cell subsets: function, generation, and maintenance,” Annual Review of Immunology, vol. 22, pp. 745–763, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. R. Kreher, M. T. Dittrich, R. Guerkov, B. O. Boehm, and M. Tary-Lehmann, “CD4+ and CD8+ cells in cryopreserved human PBMC maintain full functionality in cytokine ELISPOT assays,” Journal of Immunological Methods, vol. 278, no. 1-2, pp. 79–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. J. T. Minang, I. Areström, and N. Ahlborg, “ELISpot displays a better detection over ELISA of T helper (Th) 2-type cytokine-production by ex vivo-stimulated antigen-specific T cells from human peripheral blood,” Immunological Investigations, vol. 37, no. 4, pp. 279–291, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Letsch and C. Scheibenbogen, “Quantification and characterization of specific T-cells by antigen-specific cytokine production using ELISPOT assay or intracellular cytokine staining,” Methods, vol. 31, no. 2, pp. 143–149, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. H. Streeck, N. Frahm, and B. D. Walker, “The role of IFN-γ Elispot assay in HIV vaccine research,” Nature Protocols, vol. 4, no. 4, pp. 461–469, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Schmittel, U. Keilholz, S. Bauer et al., “Application of the IFN-γ ELISPOT assay to quantify T cell responses against proteins,” Journal of Immunological Methods, vol. 247, no. 1-2, pp. 17–24, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. J. Monaco, “Pathways for the processing and presentation of antigens to T cells,” Journal of Leukocyte Biology, vol. 57, no. 4, pp. 543–547, 1995. View at Google Scholar · View at Scopus
  22. F. Kiecker, M. Streitz, B. Ay et al., “Analysis of antigen-specific T-cell responses with synthetic peptides—what kind of peptide for which purpose?” Human Immunology, vol. 65, no. 5, pp. 523–536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Draenert, M. Altfeld, C. Brander et al., “Comparison of overlapping peptide sets for detection of antiviral CD8 and CD4 T cell responses,” Journal of Immunological Methods, vol. 275, no. 1-2, pp. 19–29, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. N. D. Russell, M. G. Hudgens, R. Ha, C. Havenar-Daughton, and M. J. McElrath, “Moving to human immunodeficiency virus type 1 vaccine efficacy trials: defining T cell responses as potential correlates of immunity,” Journal of Infectious Diseases, vol. 187, no. 2, pp. 226–242, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. G. M. Lauer, M. Lucas, J. Timm et al., “Full-breadth analysis of CD8+ T-cell responses in acute hepatitis C virus infection and early therapy,” Journal of Virology, vol. 79, no. 20, pp. 12979–12988, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. M. M. Addo, X. G. Yu, A. Rathod et al., “Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load,” Journal of Virology, vol. 77, no. 3, pp. 2081–2092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Jones, M. Eggena, C. Baker et al., “Presence of distinct subsets of cytolytic CD8+ T cells in chronic HIV infection,” AIDS Research and Human Retroviruses, vol. 22, no. 10, pp. 1007–1013, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. P. V. Suneetha, V. Schlaphoff, C. Wang et al., “Effect of peptide pools on effector functions of antigen-specific CD8+ T cells,” Journal of Immunological Methods, vol. 342, no. 1-2, pp. 33–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J. R. Currier, E. G. Kuta, E. Turk et al., “A panel of MHC class I restricted viral peptides for use as a quality control for vaccine trial ELISPOT assays,” Journal of Immunological Methods, vol. 260, no. 1-2, pp. 157–172, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Dubey, J. Clair, T.-M. Fu et al., “Detection of HIV vaccine-induced cell-mediated immunity in HIV-seronegative clinical trial participants using an optimized and validated enzyme-linked immunospot assay,” Journal of Acquired Immune Deficiency Syndromes, vol. 45, no. 1, pp. 20–27, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Reyes-Sandoval, F. E. Pearson, S. Todryk, and K. Ewer, “Potency assays for novel T-cell-inducing vaccines against malaria,” Current Opinion in Molecular Therapeutics, vol. 11, no. 1, pp. 72–80, 2009. View at Google Scholar · View at Scopus
  32. S. M. Keating, P. Bejon, T. Berthoud et al., “Durable human memory T cells quantifiable by cultured enzyme-linked immunospot assays are induced by heterologous prime boost immunization and correlate with protection against malaria,” Journal of Immunology, vol. 175, no. 9, pp. 5675–5680, 2005. View at Google Scholar · View at Scopus
  33. S. A. Calarota, A. Foli, R. Maserati et al., “HIV-1-specific T cell precursors with high proliferative capacity correlate with low viremia and high CD4 counts in untreated individuals,” Journal of Immunology, vol. 180, no. 9, pp. 5907–5915, 2008. View at Google Scholar · View at Scopus
  34. S. A. Calarota, A. Chiesa, P. Zelini, G. Comolli, L. Minoli, and F. Baldanti, “Detection of Epstein-Barr virus-specific memory CD4+ T cells using a peptide-based cultured enzyme-linked immunospot assay,” Immunology, vol. 139, no. 4, pp. 533–544, 2013. View at Google Scholar
  35. N. Goonetilleke, S. Moore, L. Dally et al., “Induction of multifunctional human immunodeficiency virus type 1 (HIV-1)-specific T cells capable of proliferation in healthy subjects by using a prime-boost regimen of DNA- and modified vaccinia virus Ankara-vectored vaccines expressing HIV-1 gag coupled to CD8+ T-cell epitopes,” Journal of Virology, vol. 80, no. 10, pp. 4717–4728, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Campion, M. S. Cohen, A. J. McMichael, S. Galvin, and N. Goonetilleke, “Improved detection of latent Mycobacterium tuberculosis infection in HIV-1 seropositive individuals using cultured cellular assays,” European Journal of Immunology, vol. 41, no. 1, pp. 255–257, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. A. J. Godkin, H. C. Thomas, and P. J. Openshaw, “Evolution of epitope-specific memory CD4+ T cells after clearance of hepatitis C virus,” Journal of Immunology, vol. 169, no. 4, pp. 2210–2214, 2002. View at Google Scholar · View at Scopus
  38. M. Pinder, W. H. H. Reece, M. Plebanski et al., “Cellular immunity induced by the recombinant Plasmodium falciparum malaria vaccine, RTS,S/AS02, in semi-immune adults in The Gambia,” Clinical and Experimental Immunology, vol. 135, no. 2, pp. 286–293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. J. M. Moser, E. R. Sassano, D. C. Leistritz et al., “Optimization of a dendritic cell-based assay for the in vitro priming of naïve human CD4+ T cells,” Journal of Immunological Methods, vol. 353, no. 1-2, pp. 8–19, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. S. M. Todryk, A. A. Pathan, S. Keating et al., “The relationship between human effector and memory T cells measured by ex vivo and cultured ELISPOT following recent and distal priming,” Immunology, vol. 128, no. 1, pp. 83–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Paolucci, A. Foli, R. Gulminetti et al., “HIV-1 plasma variants encoding truncated reverse trancriptase (RT) in a patient with high RT-specific CD8+ memory T-cell response,” Current HIV Research, vol. 7, no. 3, pp. 302–310, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. M. Ndhlovu, J. Proudfoot, K. Cesa et al., “Elite controllers with low to absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory responses,” Journal of Virology, vol. 86, no. 12, pp. 6959–6969, 2012. View at Google Scholar
  43. E. J. Wherry, V. Teichgräber, T. C. Becker et al., “Lineage relationship and protective immunity of memory CD8T cell subsets,” Nature Immunology, vol. 4, no. 3, pp. 225–234, 2003. View at Publisher · View at Google Scholar · View at Scopus
  44. W. H. H. Reece, M. Pinder, P. K. Gothard et al., “A CD4+ T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease,” Nature Medicine, vol. 10, no. 4, pp. 406–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. M. F. Bachmann, P. Wolint, K. Schwarz, and A. Oxenius, “Recall proliferation potential of memory CD8+ T cells and antiviral protection,” Journal of Immunology, vol. 175, no. 7, pp. 4677–4685, 2005. View at Google Scholar · View at Scopus
  46. A. Reyes-Sandoval, D. H. Wyllie, K. Bauza et al., “CD8+ T effector memory cells protect against liver-stage malaria,” Journal of Immunology, vol. 187, no. 3, pp. 1347–1357, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. N. L. Letvin, J. R. Mascola, Y. Sun et al., “Preserved CD4+ central memory T cells and survival in vaccinated SIV-challenged monkeys,” Science, vol. 312, no. 5779, pp. 1530–1533, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Vaccari, C. J. Trindade, D. Venzon, M. Zanetti, and G. Franchini, “Vaccine-induced CD8+ central memory T cells in protection from simian AIDS,” Journal of Immunology, vol. 175, no. 6, pp. 3502–3507, 2005. View at Google Scholar · View at Scopus
  49. S. G. Hansen, J. C. Ford, M. S. Lewis et al., “Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine,” Nature, vol. 473, no. 7348, pp. 523–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S.-H. Yang, C.-G. Lee, S.-H. Park et al., “Correlation of antiviral T-cell responses with suppression of viral rebound in chronic hepatitis B carriers: a proof-of-concept study,” Gene Therapy, vol. 13, no. 14, pp. 1110–1117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Goletti, O. Butera, F. Bizzoni, R. Casetti, E. Giradi, and F. Poccia, “Region of difference 1 antigen-specific CD4+ memory T cells correlate with a favorable outcome of tuberculosis,” Journal of Infectious Diseases, vol. 194, no. 7, pp. 984–992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. N. Winstone, A. Guimarães-Walker, J. Roberts et al., “Increased detection of proliferating, polyfunctional, HIV-1-specific T cells in DNA-modified vaccinia virus Ankara-vaccinated human volunteers by cultured IFN-γ ELISPOT assay,” European Journal of Immunology, vol. 39, no. 4, pp. 975–985, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Lisziewicz, N. Bakare, S. A. Calarota et al., “Single DermaVir immunization: dose-dependent expansion of precursor/memory T cells against all HIV antigens in HIV-1 infected individuals,” PLoS ONE, vol. 7, no. 5, Article ID e35416, 2012. View at Google Scholar