Table of Contents Author Guidelines Submit a Manuscript
Clinical and Developmental Immunology
Volume 2013 (2013), Article ID 985753, 6 pages
http://dx.doi.org/10.1155/2013/985753
Review Article

Roles of T Cells in the Pathogenesis of Autoimmune Diseases

1Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
2Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China

Received 9 December 2012; Accepted 6 February 2013

Academic Editor: G. Opdenakker

Copyright © 2013 Dinglei Su et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

γδ T cells are a minor population of T cells that express the TCR γδ chains, mainly distributed in the mucosal and epithelial tissue and accounting for less than 5% of the total T cells in the peripheral blood. By bridging innate and adaptive immunity, γδ T cells play important roles in the anti-infection, antitumor, and autoimmune responses. Previous research on γδ T cells was primarily concentrated on infectious diseases and tumors, whereas their functions in autoimmune diseases attracted much attention. In this paper, we summarized the various functions of γδ T cells in two prototypical autoimmune connective tissue diseases, that is, SLE and RA, elaborating on their antigen-presenting capacity, secretion of proinflammatory cytokines, immunomodulatory effects, and auxiliary function for B cells, which contribute to overproduction of proinflammatory cytokines and pathogenic autoantibodies, ultimately leading to the onset of these autoimmune diseases. Elucidation of the roles of γδ T cells in autoimmune diseases is not only conducive to in-depth understanding of the pathogenesis of these diseases, but also beneficial in providing theoretical support for the development of γδ T-cell-targeted therapy.