Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 129682, 14 pages
Research Article

Infusion of Sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate-Conjugated MOG35–55-Coupled Spleen Cells Effectively Prevents and Reverses Experimental Autoimmune Encephalomyelitis in Mice

1Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
2Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA

Received 27 April 2015; Revised 12 June 2015; Accepted 16 June 2015

Academic Editor: Ethan M. Shevach

Copyright © 2015 Lanfang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


In this study, we have evaluated our recently developed method for antigen-cell coupling using sulfosuccinimidyl-4-[N-maleimidomethyl]cyclohexane-1-carboxylate (sulfo-SMCC) heterobifunctional crosslinker in prevention and reversal of experimental autoimmune encephalomyelitis (EAE). We demonstrate that infusion of MOG35–55-coupled spleen cells (MOG-SP) significantly prevents and reverses EAE. Further studies show that the protected animals exhibit significantly delayed EAE upon EAE reinduction. Moreover, adoptive transfer of CD4+ T cells from the protected mice to naïve syngeneic mice renders the recipient mice resistant to EAE induction. Unexpectedly, CD4+ T cell proliferation is similar upon ex vivo stimulation by MOG35–55 amongst all groups. However, further analysis of those proliferating CD4+ T cells shows remarkable differences in Foxp3+ regulatory T cells (70% in MOG-SP groups versus 10–25% in control groups) and in IL-17+ cells (2-3% in MOG-SP groups versus 6–9% in control groups). In addition, we discover that MOG-SP treatment also significantly attenuates MOG35–55-responding IFN-γ-producing Th1 cells. These findings suggest that MOG-SP treatment induces EAE protective MOG35–55-specific regulatory T cells and suppresses EAE pathogenic Th17 and Th1 cells. Our study provides a novel approach for antigen-based EAE immunotherapy, which can potentially be translated into clinical application for immunotherapy of multiple sclerosis.