Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2015, Article ID 979167, 8 pages
http://dx.doi.org/10.1155/2015/979167
Review Article

Immune Disorders in Hashimoto’s Thyroiditis: What Do We Know So Far?

1Department of Endocrinology, Medical University, 20-059 Lublin, Poland
2Department of Immunology, Medical University, 20-059 Lublin, Poland

Received 16 January 2015; Revised 27 March 2015; Accepted 9 April 2015

Academic Editor: Xiao-Feng Yang

Copyright © 2015 Aleksandra Pyzik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. S. Brown, “Autoimmune thyroid disease: unlocking a complex puzzle,” Current Opinion in Pediatrics, vol. 21, no. 4, pp. 523–528, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Bossowski, M. Moniuszko, M. Dąbrowska et al., “Analysis of T regulatory cells in the peripheral blood in children and adolescents with Graves' disease and Hashimoto's thyroiditis,” Endokrynologia Pediatryczna, vol. 34, no. 1, pp. 37–48, 2011. View at Google Scholar
  3. E. N. Pearce, A. P. Farwell, and L. E. Braverman, “Thyroiditis,” The New England Journal of Medicine, vol. 348, no. 26, pp. 2646–2655, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Socha, M. Dziemianowicz, W. Omeljaniuk, J. Soroczyńska, and M. Borawska, “Dietary habits and the concentration of selenium in serum of patients with Hashimoto disease,” Problemy Higieny i Epidemiologii, vol. 93, no. 4, pp. 824–827, 2012. View at Google Scholar
  5. A. Bossowski and E. Otto-Buczkowska, “Schorzenia tarczycy o podłożu autoimmunologicznym,” in W: Pediatria —co nowego? Pod redakcją Ewy Otto-Buczkowskiej, pp. 108–120, Cornetis, Wrocław, Poland, 2007. View at Google Scholar
  6. J. R. Garber, R. H. Cobin, H. Gharib et al., “Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association,” Thyroid, vol. 22, no. 12, pp. 1200–1235, 2012. View at Publisher · View at Google Scholar
  7. M. Schott and W. A. Scherbaum, “Autoimmune Thyroid disease,” Deutsches Arzteblatt, vol. 103, no. 45, pp. 3023–3032, 2006. View at Google Scholar
  8. H. Yoshida, N. Amino, K. Yagawa et al., “Association of serum antithyroid antibodies with lymphocytic infiltration of the thyroid gland: studies of seventy autopsied cases,” The Journal of Clinical Endocrinology & Metabolism, vol. 46, no. 6, pp. 859–862, 1978. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Peretianu, “Antithyroperoxidase antibodies (ATPO) in Hashimoto thyroiditis: variation of levels and correlation with echographic patterns,” Acta Endocrinology, vol. 1, no. 1, pp. 61–78, 2005. View at Google Scholar · View at Scopus
  10. T. Kotani, K. Umeki, K. Hirai, and C. Ohtaki, “Experimental murine thyroiditis induced by porcine thyroid peroxidase and its transfer by the antigen-specific T cell line1000,” Clinical and Experimental Immunology, vol. 80, no. 1, pp. 11–18, 1990. View at Google Scholar · View at Scopus
  11. N. Matsuoka, P. Unger, A. Ben-Nun, P. Graves, and T. F. Davies, “Thyroglobulin-induced murine thyroiditis assessed by intrathyroidal T cell receptor sequencing,” Journal of Immunology, vol. 152, no. 5, pp. 2562–2568, 1994. View at Google Scholar · View at Scopus
  12. L. Chiovato, P. Bassi, F. Santini et al., “Antibodies producing complement-mediated thyroid cytotoxicity in patients with atrophic or goitrous autoimmune thyroiditis,” The Journal of Clinical Endocrinology and Metabolism, vol. 77, no. 6, pp. 1700–1705, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Ban, D. A. Greenberg, E. Concepcion, L. Skrabanek, R. Villanueva, and Y. Tomer, “Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 25, pp. 15119–15124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. A. M. McGregor, H. K. Ibbertson, B. R. Smith, and R. Hall, “Carbimazole and autoantibody synthesis in Hashimoto's thyroiditis,” British Medical Journal, vol. 281, no. 6246, pp. 968–969, 1980. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Fang, G. C. Sharp, H. Yagita, and H. Braley-Mullen, “A critical role for TRAIL in resolution of granulomatous experimental autoimmune thyroiditis,” The Journal of Pathology, vol. 216, no. 4, pp. 505–513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Beń-Skowronek, L. Szewczyk, B. Kulik-Rechberger, and E. Korobowicz, “The differences in T and B cell subsets in thyroid of children with Graves' disease and Hashimoto's thyroiditis,” World Journal of Pediatrics, vol. 9, no. 3, pp. 245–250, 2013. View at Publisher · View at Google Scholar · View at Scopus
  17. S. T. Kawashima, T. Tagami, K. Nakao et al., “Serum levels of IgG and IgG4 in Hashimoto thyroiditis,” Endocrine, vol. 45, no. 2, pp. 236–243, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. A. P. Weetman and A. M. McGregor, “Autoimmune thyroid disease: further developments in our understanding,” Endocrine Reviews, vol. 15, no. 6, pp. 788–830, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Nanba, M. Watanabe, N. Inoue, and Y. Iwatani, “Increases of the Th1/Th2 cell ratio in severe Hashimoto's disease and in the proportion of Th17 cells in intractable Graves' disease,” Thyroid, vol. 19, no. 5, pp. 495–501, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Korn, E. Bettelli, M. Oukka, and V. K. Kuchroo, “IL-17 and Th17 cells,” Annual Review of Immunology, vol. 27, pp. 485–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Zha, X. Huang, J. Lin, J. Liu, Y. Hou, and G. Wu, “Distribution of lymphocyte subpopulations in thyroid glands of human autoimmune thyroid disease,” Journal of Clinical Laboratory Analysis, vol. 28, no. 3, pp. 249–254, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Beń-Skowronek, L. Szewczyk, J. Sierocińska-Sawa, and E. Korobowicz, “Subpopulacje limfocytów w tkance tarczycowej w autoimmunologicznych i nieautoimmunologicznych chorobach tarczycy u dzieci,” Endokrynologia Pediatryczna, vol. 6, no. 3(20), pp. 9–20, 2007. View at Google Scholar
  23. L. L. Cunha, E. C. Morari, S. Nonogaki, F. A. Soares, J. Vassallo, and L. S. Ward, “Foxp3 expression is associated with aggressiveness in differentiated thyroid carcinomas,” Clinics, vol. 67, no. 5, pp. 483–488, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Miossec and J. K. Kolls, “Targeting IL-17 and TH17 cells in chronic inflammation,” Nature Reviews Drug Discovery, vol. 11, no. 10, pp. 763–776, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. C. M. Wilke, K. Bishop, D. Fox, and W. Zou, “Deciphering the role of Th17 cells in human disease,” Trends in Immunology, vol. 32, no. 12, pp. 603–611, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Zambrano-Zaragoza, E. J. Romo-Martínez, M. de Jesús Durán-Avelar, N. García-Magallanes, and N. Vibanco-Pérez, “Th17 cells in autoimmune and infectious diseases,” International Journal of Inflammation, vol. 2014, Article ID 651503, 12 pages, 2014. View at Publisher · View at Google Scholar
  27. Y. Liu, X. Tang, J. Tian et al., “Th17/Treg cells imbalance and GITRL profile in patients with hashimoto's thyroiditis,” International Journal of Molecular Sciences, vol. 15, no. 12, pp. 21674–21686, 2014. View at Publisher · View at Google Scholar
  28. Q. Qin, P. Liu, L. Liu et al., “The increased but non-predominant expression of Th17- and Th1-specific cytokines in hashimoto's thyroiditis but not in graves' disease,” Brazilian Journal of Medical and Biological Research, vol. 45, no. 12, pp. 1202–1208, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Kimura and T. Kishimoto, “IL-6: regulator of Treg/Th17 balance,” European Journal of Immunology, vol. 40, no. 7, pp. 1830–1835, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Bossowski, M. Moniuszko, E. Idźkowska et al., “Evaluation of CD4+CD161+CD196+ and CD4+IL-17+ Th17 cells in the peripheral blood of young patients with Hashimoto's thyroiditis and Graves' disease,” Pediatric Endocrinology, Diabetes, and Metabolism, vol. 18, no. 3, pp. 89–95, 2012. View at Google Scholar · View at Scopus
  31. D. Li, W. Cai, R. Gu et al., “Th17 cell plays a role in the pathogenesis of Hashimoto's thyroiditis in patients,” Clinical Immunology, vol. 149, no. 3, pp. 411–420, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Shi, H. Wang, Z. Su et al., “Differentiation imbalance of Th1/Th17 in peripheral blood mononuclear cells might contribute to pathogenesis of Hashimoto's thyroiditis,” Scandinavian Journal of Immunology, vol. 72, no. 3, pp. 250–255, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Wang, S. E. Baidoo, Y. Liu et al., “T cell-derived leptin contributes to increased frequency of T helper type 17 cells in female patients with Hashimoto's thyroiditis,” Clinical and Experimental Immunology, vol. 171, no. 1, pp. 63–68, 2013. View at Publisher · View at Google Scholar · View at Scopus
  34. P. Lewkowicz, N. Lewkowicz, and H. Tchórzewski, “CD4+CD25+ T regulatory cells: their physiology and role in modulating immune response,” Postępy Higieny i Medycyny Doświadczalnej, vol. 59, pp. 362–370, 2005. View at Google Scholar
  35. N. Misra, J. Bayry, S. Lacroix-Desmazes, M. D. Kazatchkine, and S. V. Kaveri, “Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells,” Journal of Immunology, vol. 172, no. 8, pp. 4676–4680, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Trzonkowski, E. Szmit, J. Myśliwska, A. Dobyszuk, and A. Myśliwski, “CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction,” Clinical Immunology, vol. 112, no. 3, pp. 258–267, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Baecher-Allan, V. Viglietta, and D. A. Hafler, “Human CD4+CD25+ regulatory T cells,” Seminars in Immunology, vol. 16, no. 2, pp. 89–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. H. J. Kim, B. Verbinnen, X. Tang, L. Lu, and H. Cantor, “Inhibition of follicular T-helper cells by CD8+ regulatory T cells is essential for self tolerance,” Nature, vol. 467, no. 7313, pp. 328–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, “Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases,” The Journal of Immunology, vol. 155, no. 3, pp. 1151–1164, 1995. View at Google Scholar · View at Scopus
  40. S. Hori, T. Nomura, and S. Sakaguchi, “Control of regulatory T cell development by the transcription factor Foxp3,” Science, vol. 299, no. 5609, pp. 1057–1061, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Bossowski, M. Moniuszko, M. Dabrowska et al., “Lower proportions of CD4+CD25high and CD4 +FoxP3, but not CD4+CD25+CD127low FoxP3+T cell levels in children with autoimmune thyroid diseases,” Autoimmunity, vol. 46, no. 3, pp. 222–230, 2013. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Marazuela, M. A. García-López, N. Figueroa-Vega et al., “Regulatory T cells in human autoimmune thyroid disease,” The Journal of Clinical Endocrinology & Metabolism, vol. 91, no. 9, pp. 3639–3646, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. S. G. Zheng, J. H. Wang, J. D. Gray, H. Soucier, and D. A. Horwitz, “Natural and induced CD4+CD25+ cells educate CD4+CD25 cells to develop suppressive activity: the role of IL-2, TGF-β, and IL-10,,” Journal of Immunology, vol. 172, no. 9, pp. 5213–5221, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. D. A. Chistiakov and R. I. Turakulov, “CTLA-4 and its role in autoimmune thyroid disease,” Journal of Molecular Endocrinology, vol. 31, no. 1, pp. 21–36, 2003. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Nakano, M. Watanabe, T. Iida et al., “Apoptosis-induced decrease of intrathyroidal CD4+CD25+ regulatory T cells in autoimmune thyroid diseases,” Thyroid, vol. 17, no. 1, pp. 25–31, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. A. B. Glick, A. Wodzinski, P. Fu, A. D. Levine, and D. N. Wald, “Impairment of regulatory T-Cell function in autoimmune thyroid disease,” Thyroid, vol. 23, no. 7, pp. 871–878, 2013. View at Publisher · View at Google Scholar · View at Scopus
  47. G. Penna, A. Roncari, S. Amuchastegui et al., “Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3,” Blood, vol. 106, no. 10, pp. 3490–3497, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Bossowski, B. Czarnocka, A. Stasiak-Barmuta, K. Bardadin, M. Urban, and J. Dadan, “Analysis of Fas, FasL and Caspase-8 expression in thyroid gland in young patients with immune and non-immune thyroid diseases,” Endokrynologia Polska, vol. 58, no. 4, pp. 303–313, 2007. View at Google Scholar · View at Scopus
  49. K. Łącka and A. Maciejewski, “The role of apoptosis in the etiopathogenesis of autoimmune thyroiditis,” Polski Merkuriusz Lekarski, vol. 32, no. 188, pp. 87–92, 2012. View at Google Scholar · View at Scopus
  50. C. Giordano, G. Stassi, R. de Maria et al., “Potential involvement of fas and its ligand in the pathogenesis of Hashimoto's thyroiditis,” Science, vol. 275, no. 5302, pp. 960–963, 1997. View at Google Scholar · View at Scopus
  51. G. Stassi, M. Todaro, F. Bucchieri et al., “Fas/Fas ligand-driven T cell apoptosis as a consequence of ineffective thyroid immunoprivilege in Hashimoto's thyroiditis,” Journal of Immunology, vol. 162, no. 1, pp. 263–267, 1999. View at Google Scholar · View at Scopus
  52. H. W. Su, M. Van Antwerp, R. Kuick et al., “Microarray analysis of cytokine activation of apoptosis pathways in the thyroid,” Endocrinology, vol. 148, no. 10, pp. 4844–4852, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. J. R. Baker Jr., “The nature of apoptosis in the thyroid and the role it may play in autoimmune thyroid disease,” Thyroid, vol. 11, no. 3, pp. 245–247, 2001. View at Google Scholar
  54. G. H. Fisher, F. J. Rosenberg, S. E. Straus et al., “Dominant interfering fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome,” Cell, vol. 81, no. 6, pp. 935–946, 1995. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Stassi, A. Zeuner, D. di Liberto, M. Todaro, L. Ricci-Vitiani, and R. de Maria, “Fas-FasL in Hashimoto's thyroiditis,” Journal of Clinical Immunology, vol. 21, no. 1, pp. 19–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Feldkamp, E. Pascher, A. Perniok, and W. A. Scherbaum, “Fas-mediated apoptosis is inhibited by TSH and iodine in moderate concentrations in primary human thyrocytes in vitro,” Hormone and Metabolic Research, vol. 31, no. 6, pp. 355–358, 1999. View at Publisher · View at Google Scholar · View at Scopus
  57. J. Feldkamp, E. Pascher, M. Schott, P. Goretzki, J. Seissler, and W. A. Scherbaum, “Soluble Fas is increased in hyperthyroidism independent of the underlying thyroid disease,” The Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 9, pp. 4250–4253, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Bona, S. Defranco, A. Chiocchetti et al., “Defective function of Fas in T cells from paediatric patients with autoimmune thyroid diseases,” Clinical & Experimental Immunology, vol. 133, no. 3, pp. 430–437, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. N. Arata, T. Ando, P. Unger, and T. F. Davies, “By-stander activation in autoimmune thyroiditis: studies on experimental autoimmune thyroiditis in the GFP+ fluorescent mouse,” Clinical Immunology, vol. 121, no. 1, pp. 108–117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. G. F. Bottazzo, I. Todd, and R. Pujol-Borrell, “Hypotheses on genetic contributions to the aetiology of diabetes mellitus,” Immunology Today, vol. 5, no. 8, pp. 230–231, 1984. View at Publisher · View at Google Scholar · View at Scopus
  61. E. L. Khoury, L. Pereira, and F. S. Greenspan, “Induction of HLA-DR expression on thyroid follicular cells by cytomegalovirus infection in vitro. Evidence for a dual mechanism of induction,” The American Journal of Pathology, vol. 138, no. 5, pp. 1209–1223, 1991. View at Google Scholar · View at Scopus
  62. D. S. Neufeld, M. Platzer, and T. F. Davies, “Reovirus induction of MHC class II antigen in rat thyroid cells,” Endocrinology, vol. 124, no. 1, pp. 543–545, 1989. View at Publisher · View at Google Scholar · View at Scopus
  63. T. F. Davies, “The role of human thyroid cell Ia (DR) antigen in thyroid autoimmunity,” in Autoimmunity and the Thyroid, P. G. Walfish, J. R. Wall, and R. Volpe, Eds., p. 51, Academic Press, New York, NY, USA, 1985. View at Google Scholar