Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016, Article ID 1079851, 13 pages
http://dx.doi.org/10.1155/2016/1079851
Research Article

TNF-α Autocrine Feedback Loops in Human Monocytes: The Pro- and Anti-Inflammatory Roles of the TNF-α Receptors Support the Concept of Selective TNFR1 Blockade In Vivo

1Department of Clinical and Experimental Medicine, University of Birmingham, Edgbaston, Birmingham, UK
2Lung Investigation Unit, University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK

Received 7 May 2016; Revised 29 July 2016; Accepted 7 August 2016

Academic Editor: Senthamil Selvan

Copyright © 2016 Jennie M. Gane et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Parameswaran and S. Patial, “Tumor necrosis factor-a signaling in macrophages,” Critical Reviews in Eukaryotic Gene Expression, vol. 20, no. 2, pp. 87–103, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Singh, R. Christensen, G. A. Wells et al., “Biologics for rheumatoid arthritis: an overview of Cochrane reviews,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD007848, 2009. View at Google Scholar · View at Scopus
  3. J. Yost and J. E. Gudjonsson, “The role of TNF inhibitors in psoriasis therapy: new implications for associated comorbidities,” F1000 Medicine Reports, vol. 1, article 30, 2009. View at Publisher · View at Google Scholar
  4. J. R. Cummings, S. Keshav, and S. P. L. Travis, “Medical management of Crohn's disease,” British Medical Journal, vol. 336, no. 7652, pp. 1062–1066, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Danese and C. Fiocchi, “Ulcerative colitis,” The New England Journal of Medicine, vol. 365, no. 18, pp. 1713–1725, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Chen and J. J. Oppenheim, “Contrasting effects of TNF and anti-TNF on the activation of effector T cells and regulatory T cells in autoimmunity,” FEBS Letters, vol. 585, no. 23, pp. 3611–3618, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Andreadou, E. Kemanetzoglou, C. Brokalaki et al., “Demyelinating disease following anti-tnfa treatment: a causal or coincidental association? Report of four cases and review of the literature,” Case Reports in Neurological Medicine, vol. 2013, Article ID 671935, 9 pages, 2013. View at Publisher · View at Google Scholar
  8. S. Blüml, C. Scheinecker, J. S. Smolen, and K. Redlich, “Targeting TNF receptors in rheumatoid arthritis,” International Immunology, vol. 24, no. 5, pp. 275–281, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. B. B. Aggarwal, “Signalling pathways of the TNF superfamily: A double-edged sword,” Nature Reviews Immunology, vol. 3, no. 9, pp. 745–756, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. D. J. MacEwan, “TNF receptor subtype signalling: differences and cellular consequences,” Cellular Signalling, vol. 14, no. 6, pp. 477–492, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. Kafrouni, G. R. Brown, and D. L. Thiele, “The role of TNF-TNFR2 interactions in generation of CTL responses and clearance of hepatic adenovirus infection,” Journal of Leukocyte Biology, vol. 74, no. 4, pp. 564–571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. I. D'hulst, K. R. Bracke, T. Maes et al., “Role of tumour necrosis factor-α receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema,” European Respiratory Journal, vol. 28, no. 1, pp. 102–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. Baliopharm, “Product Pipeline /ATROSAB,” 2016, http://www.baliopharm.com/de/product-pipeline/atrosab.html.
  14. A. Proudfoot, C. O'Kane, A. Bayliffe et al., “A novel TNFR1-targeting domain antibody attenuates pulmonary inflammation in a human model of lung injury, via actions on the lung micro-vascular endothelium,” in A47. Critical Illness: Novel Molecules and Models, A6589, American Thoracic Society, 2014. View at Google Scholar
  15. A. A. Manfredi, M. Baldini, M. Camera et al., “Anti-TNFα agents curb platelet activation in patients with rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 75, no. 8, pp. 1511–1520, 2016. View at Publisher · View at Google Scholar
  16. J. M. Gane, R. A. Stockley, and E. Sapey, “The rs361525 polymorphism does not increase production of tumor necrosis factor alpha by monocytes from alpha-1 antitrypsin deficient subjects with chronic obstructive pulmonary disease—a pilot study,” Journal of Negative Results in BioMedicine, vol. 14, no. 1, article 20, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Wong and J. F. Medrano, “Real-time PCR for mRNA quantitation,” BioTechniques, vol. 39, no. 1, pp. 75–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. Systems RaD, Flow Cytometry Protocol for Staining Membrane-Associated Proteins in Suspended Cells, 2015, https://www.rndsystems.com/resources/protocols/flow-cytometry-protocol-staining-membrane-associated-proteins-suspended-cells.
  19. M. Grell, E. Douni, H. Wajant et al., “The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor,” Cell, vol. 83, no. 5, pp. 793–802, 1995. View at Publisher · View at Google Scholar · View at Scopus
  20. J. A. J. Barbara, W. B. Smith, J. R. Gamble et al., “Dissociation of TNF-α cytotoxic and proinflammatory activities by p55 receptor- and p75 receptor-selective TNF-α mutants,” The EMBO Journal, vol. 13, no. 4, pp. 843–850, 1994. View at Google Scholar · View at Scopus
  21. S. Bryde, I. Grunwald, A. Hammer et al., “Tumor necrosis factor (TNF)-functionalized nanostructured particles for the stimulation of membrane TNF-specific cell responses,” Bioconjugate Chemistry, vol. 16, no. 6, pp. 1459–1467, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. J. H. Youn, Y. J. Oh, E. S. Kim, J. E. Choi, and J.-S. Shin, “High mobility group box 1 protein binding to lipopolysaccharide facilitates transfer of lipopolysaccharide to CD14 and enhances lipopolysaccharide-mediated TNF-α production in human monocytes,” The Journal of Immunology, vol. 180, no. 7, pp. 5067–5074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. Sigma-Aldrich, “Lipopolysaccharides from Salmonella enteriditis-Product Information,” http://www.sigmaaldrich.com/catalog/product/sigma/l6011.
  24. M. Saraiva and A. O'Garra, “The regulation of IL-10 production by immune cells,” Nature Reviews Immunology, vol. 10, no. 3, pp. 170–181, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. H. L. Dickensheets, S. L. Freeman, M. F. Smith Jr., and R. P. Donnelly, “Interleukin-10 upregulates tumor necrosis factor receptor type-II (p75) gene expression in endotoxin-stimulated human monocytes,” Blood, vol. 90, no. 10, pp. 4162–4171, 1997. View at Google Scholar · View at Scopus
  26. K. Asadullah, W. Sterry, and H. D. Volk, “Interleukin-10 therapy—review of a new approach,” Pharmacological Reviews, vol. 55, no. 2, pp. 241–269, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. G. C. Suvannavejh, H.-O. Lee, J. Padilla, M. C. Dal Canto, T. A. Barrett, and S. D. Miller, “Divergent roles for p55 and p75 tumor necrosis factor receptors in the pathogenesis of MOG35–55-induced experimental autoimmune encephalomyelitis,” Cellular Immunology, vol. 205, no. 1, pp. 24–33, 2000. View at Publisher · View at Google Scholar
  28. K. Imamura, D. Spriggs, and D. Kufe, “Expression of tumor necrosis factor receptors on human monocytes and internalization of receptor bound ligand,” Journal of Immunology, vol. 139, no. 9, pp. 2989–2992, 1987. View at Google Scholar · View at Scopus
  29. H. Rauert, A. Wicovsky, N. Müller et al., “Membrane Tumor Necrosis Factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2),” The Journal of Biological Chemistry, vol. 285, no. 10, pp. 7394–7404, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. F. Gantner, R. Kupferschmidt, C. Schudt, A. Wendel, and A. Hatzelmann, “In vitro differentiation of human monocytes to macrophages: change of PDE profile and its relationship to suppression of tumour necrosis factor-α release by PDE inhibitors,” British Journal of Pharmacology, vol. 121, no. 2, pp. 221–231, 1997. View at Publisher · View at Google Scholar · View at Scopus
  31. J. A. Lopatnikova, F. F. Vasilyev, A. A. Alshevskaya, and S. V. Sennikov, “Quantitative flow cytometric analysis of expression of tumor necrosis factor receptor types I and II on mononuclear cells,” Journal of Receptors and Signal Transduction, vol. 33, no. 1, pp. 49–55, 2013. View at Publisher · View at Google Scholar · View at Scopus
  32. N. Wang, H. Liang, and K. Zen, “Molecular mechanisms that influence the macrophage M1-M2 polarization balance,” Frontiers in Immunology, vol. 5, article 614, 2014. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Ginhoux and S. Jung, “Monocytes and macrophages: developmental pathways and tissue homeostasis,” Nature Reviews Immunology, vol. 14, no. 6, pp. 392–404, 2014. View at Publisher · View at Google Scholar · View at Scopus