Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016, Article ID 3850839, 11 pages
http://dx.doi.org/10.1155/2016/3850839
Review Article

Chimeric Antigen Receptor-Modified T Cells for Solid Tumors: Challenges and Prospects

Department of Immunology, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing 100853, China

Received 20 October 2015; Revised 18 December 2015; Accepted 28 January 2016

Academic Editor: Kurt Blaser

Copyright © 2016 Yelei Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. H. Kershaw, J. A. Westwood, and P. K. Darcy, “Gene-engineered T cells for cancer therapy,” Nature Reviews Cancer, vol. 13, no. 8, pp. 525–541, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Sadelain, R. Brentjens, and I. Rivière, “The basic principles of chimeric antigen receptor design,” Cancer Discovery, vol. 3, no. 4, pp. 388–398, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. J. N. Kochenderfer, M. E. Dudley, S. H. Kassim et al., “Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor,” Journal of Clinical Oncology, vol. 33, no. 6, pp. 540–549, 2015. View at Publisher · View at Google Scholar · View at Scopus
  4. J. N. Kochenderfer, M. E. Dudley, S. A. Feldman et al., “B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells,” Blood, vol. 119, no. 12, pp. 2709–2720, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. U. Louis, B. Savoldo, G. Dotti et al., “Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma,” Blood, vol. 118, no. 23, pp. 6050–6056, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. R. J. Brentjens, M. L. Davila, I. Riviere et al., “CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia,” Science Translational Medicine, vol. 5, no. 177, Article ID 177ra38, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. C. H. J. Lamers, S. Sleijfer, A. G. Vulto et al., “Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience,” Journal of Clinical Oncology, vol. 24, no. 13, pp. e20–e22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. H. J. Lamers, S. Sleijfer, S. Van Steenbergen et al., “Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity,” Molecular Therapy, vol. 21, no. 4, pp. 904–912, 2013. View at Publisher · View at Google Scholar · View at Scopus
  9. J. R. Park, D. L. Digiusto, M. Slovak et al., “Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma,” Molecular Therapy, vol. 15, no. 4, pp. 825–833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. G. Gross, T. Waks, and Z. Eshhar, “Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 24, pp. 10024–10028, 1989. View at Publisher · View at Google Scholar · View at Scopus
  11. M. H. Kershaw, J. A. Westwood, L. L. Parker et al., “A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer,” Clinical Cancer Research, vol. 12, no. 20, pp. 6106–6115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. M. A. Pule, B. Savoldo, G. D. Myers et al., “Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma,” Nature Medicine, vol. 14, no. 11, pp. 1264–1270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. R. A. Morgan, J. C. Yang, M. Kitano, M. E. Dudley, C. M. Laurencot, and S. A. Rosenberg, “Case report of a serious adverse event following the administration of t cells transduced with a chimeric antigen receptor recognizing ERBB2,” Molecular Therapy, vol. 18, no. 4, pp. 843–851, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. G. L. Beatty, A. R. Haas, M. V. Maus et al., “Mesothelin-specific chimeric antigen receptor mRNA-engineered T cells induce anti-tumor activity in solid malignancies,” Cancer Immunology Research, vol. 2, no. 2, pp. 112–120, 2014. View at Publisher · View at Google Scholar
  15. N. Ahmed, V. S. Brawley, M. Hegde et al., “Human Epidermal Growth Factor Receptor 2 (HER2) -specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma,” Journal of Clinical Oncology, vol. 33, no. 15, pp. 1688–1696, 2015. View at Publisher · View at Google Scholar
  16. M. V. Maus, A. R. Haas, G. L. Beatty et al., “T cells expressing chimeric antigen receptors can cause anaphylaxis in humans,” Cancer Immunology Research, vol. 1, pp. 26–31, 2013. View at Google Scholar
  17. S. C. Katz, R. A. Burga, E. McCormack et al., “Phase I hepatic immunotherapy for metastases study of intra-arterial chimeric antigen receptor-modified T-cell therapy for CEA+ liver metastases,” Clinical Cancer Research, vol. 21, no. 14, pp. 3149–3159, 2015. View at Publisher · View at Google Scholar
  18. X. Tang, Y. Zhou, W. Li et al., “T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo,” Journal of Biomedical Research, vol. 28, no. 6, pp. 468–475, 2014. View at Publisher · View at Google Scholar
  19. G. Jakka, P. C. Schuberth, M. Thiel et al., “Antigen-specific in vitro expansion of functional redirected NY-ESO-1-specific human CD8+ T-cells in a cell-free system,” Anticancer Research, vol. 33, no. 10, pp. 4189–4201, 2013. View at Google Scholar · View at Scopus
  20. N. Ahmed, V. S. Salsman, E. Yvon et al., “Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression,” Molecular Therapy, vol. 17, no. 10, pp. 1779–1787, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Ebb, P. Meyers, H. Grier et al., “Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group,” Journal of Clinical Oncology, vol. 30, no. 20, pp. 2545–2551, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sadelain, R. Brentjens, and I. Rivière, “The promise and potential pitfalls of chimeric antigen receptors,” Current Opinion in Immunology, vol. 21, no. 2, pp. 215–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Kakarla and S. Gottschalk, “CAR T cells for solid tumors: armed and ready to go?” Cancer Journal, vol. 20, no. 2, pp. 151–155, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. P. G. Coulie, B. J. Van den Eynde, P. van der Bruggen, and T. Boon, “Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy,” Nature Reviews Cancer, vol. 14, no. 2, pp. 135–146, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Vigneron, V. Stroobant, B. J. Van den Eynde, and P. van der Bruggen, “Database of T cell-defined human tumor antigens: the 2013 update,” Cancer Immunity, vol. 13, article 15, 2013. View at Google Scholar
  26. E. F. Fritsch, N. Hacohen, and C. J. Wu, “Personal neoantigen cancer vaccines: the momentum builds,” Oncoimmunology, vol. 3, no. 6, Article ID e29311, 2014. View at Publisher · View at Google Scholar · View at Scopus
  27. J. H. Sampson, A. B. Heimberger, G. E. Archer et al., “Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4722–4729, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Blankenstein, M. Leisegang, W. Uckert, and H. Schreiber, “Targeting cancer-specific mutations by T cell receptor gene therapy,” Current Opinion in Immunology, vol. 33, pp. 112–119, 2015. View at Publisher · View at Google Scholar
  29. F. Turatti, M. Figini, E. Balladore et al., “Redirected activity of human antitumor chimeric immune receptors is governed by antigen and receptor expression levels and affinity of interaction,” Journal of Immunotherapy, vol. 30, no. 7, pp. 684–693, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Chmielewski, A. Hombach, C. Heuser, G. P. Adams, and H. Abken, “T cell activation by antibody-like immunoreceptors: increase in affinity of the single-chain fragment domain above threshold does not increase T cell activation against antigen-positive target cells but decreases selectivity,” The Journal of Immunology, vol. 173, no. 12, pp. 7647–7653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Liu, S. Jiang, C. Fang et al., “Affinity-tuned ErbB2 or EGFR chimeric antigen receptor T cells exhibit an increased therapeutic index against tumors in mice,” Cancer Research, vol. 75, no. 17, pp. 3596–3607, 2015. View at Publisher · View at Google Scholar
  32. H. G. Caruso, L. V. Hurton, A. Najjar et al., “Tuning sensitivity of CAR to EGFR density limits recognition of normal tissue while maintaining potent antitumor activity,” Cancer Research, vol. 75, no. 17, pp. 3505–3518, 2015. View at Publisher · View at Google Scholar
  33. C. H. J. Lamers, R. Willemsen, P. van Elzakker et al., “Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells,” Blood, vol. 117, no. 1, pp. 72–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. A. H. Long, W. M. Haso, J. F. Shern et al., “4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors,” Nature Medicine, vol. 21, no. 6, pp. 581–590, 2015. View at Publisher · View at Google Scholar
  35. H. Zhang, K. M. Snyder, M. M. Suhoski et al., “4-1BB is superior to CD28 costimulation for generating CD8+ cytotoxic lymphocytes for adoptive immunotherapy,” The Journal of Immunology, vol. 179, no. 7, pp. 4910–4918, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Carpenito, M. C. Milone, R. Hassan et al., “Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 9, pp. 3360–3365, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. X.-S. Zhong, M. Matsushita, J. Plotkin, I. Riviere, and M. Sadelain, “Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3 kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication,” Molecular Therapy, vol. 18, no. 2, pp. 413–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. A. A. Hombach, G. Rappl, and H. Abken, “Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28-OX40 ‘super-stimulation’,” Molecular Therapy, vol. 21, no. 12, pp. 2268–2277, 2013. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Zhao, Q. J. Wang, S. Yang et al., “A herceptin-based chimeric antigen receptor with modified signaling domains leads to enhanced survival of transduced T lymphocytes and antitumor activity,” The Journal of Immunology, vol. 183, no. 9, pp. 5563–5574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. L. Maude, N. Frey, P. A. Shaw et al., “Chimeric antigen receptor T cells for sustained remissions in leukemia,” The New England Journal of Medicine, vol. 371, no. 16, pp. 1507–1517, 2014. View at Publisher · View at Google Scholar · View at Scopus
  41. D. W. Lee, J. N. Kochenderfer, M. Stetler-Stevenson et al., “T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial,” The Lancet, vol. 385, no. 9967, pp. 517–528, 2015. View at Publisher · View at Google Scholar · View at Scopus
  42. M. C. Milone, J. D. Fish, C. Carpenito et al., “Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo,” Molecular Therapy, vol. 17, no. 8, pp. 1453–1464, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. M. Kowolik, M. S. Topp, S. Gonzalez et al., “CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells,” Cancer Research, vol. 66, no. 22, pp. 10995–11004, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. H. M. Finney, A. N. Akbar, and A. D. G. Lawson, “Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCRζ chain,” The Journal of Immunology, vol. 172, no. 1, pp. 104–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. C. S. Hinrichs, Z. A. Borman, L. Cassard et al., “Adoptively transferred effector cells derived from naïve rather than central memory CD8+ T cells mediate superior antitumor immunity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 41, pp. 17469–17474, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. C. A. Klebanoff, L. Gattinoni, P. Torabi-Parizi et al., “Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 27, pp. 9571–9576, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. C. H. J. Lamers, S. van Steenbergen-Langeveld, M. van Brakel et al., “T cell receptor-engineered T cells to treat solid tumors: T cell processing toward optimal T cell fitness,” Human Gene Therapy Methods, vol. 25, no. 6, pp. 345–357, 2014. View at Publisher · View at Google Scholar · View at Scopus
  48. C. S. Hinrichs, R. Spolski, C. M. Paulos et al., “IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy,” Blood, vol. 111, no. 11, pp. 5326–5333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Kaneko, S. Mastaglio, A. Bondanza et al., “IL-7 and IL-15 allow the generation of suicide gene-modified alloreactive self-renewing central memory human T lymphocytes,” Blood, vol. 113, no. 5, pp. 1006–1015, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. N. Pouw, E. Treffers-Westerlaken, A. Mondino, C. Lamers, and R. Debets, “TCR gene-engineered T cell: limited T cell activation and combined use of IL-15 and IL-21 ensure minimal differentiation and maximal antigen-specificity,” Molecular Immunology, vol. 47, no. 7-8, pp. 1411–1420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. C. E. Brown, R. P. Vishwanath, B. Aguilar et al., “Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells,” The Journal of Immunology, vol. 179, no. 5, pp. 3332–3341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. U. Palendira, R. Chinn, W. Raza et al., “Selective accumulation of virus-specific CD8+ T cells with unique homing phenotype within the human bone marrow,” Blood, vol. 112, no. 8, pp. 3293–3302, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. B. Jena, G. Dotti, and L. J. N. Cooper, “Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor,” Blood, vol. 116, no. 7, pp. 1035–1044, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. M. H. Kershaw, G. Wang, J. A. Westwood et al., “Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2,” Human Gene Therapy, vol. 13, no. 16, pp. 1971–1980, 2002. View at Publisher · View at Google Scholar
  55. A. Di Stasi, B. De Angelis, C. M. Rooney et al., “T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model,” Blood, vol. 113, no. 25, pp. 6392–6402, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. M. D. Vesely, M. H. Kershaw, R. D. Schreiber, and M. J. Smyth, “Natural innate and adaptive immunity to cancer,” Annual Review of Immunology, vol. 29, pp. 235–271, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. J. A. Joyce and D. T. Fearon, “T cell exclusion, immune privilege, and the tumor microenvironment,” Science, vol. 348, no. 6230, pp. 74–80, 2015. View at Publisher · View at Google Scholar
  58. P. Sharma and J. P. Allison, “The future of immune checkpoint therapy,” Science, vol. 348, no. 6230, pp. 56–61, 2015. View at Publisher · View at Google Scholar
  59. F. Liu, R. Lang, J. Zhao et al., “CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes,” Breast Cancer Research and Treatment, vol. 130, no. 2, pp. 645–655, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. T. H. Kang, C.-P. Mao, S. Y. Lee et al., “Chemotherapy acts as an adjuvant to convert the tumor microenvironment into a highly permissive state for vaccination-induced antitumor immunity,” Cancer Research, vol. 73, no. 8, pp. 2493–2504, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. P. Muranski, A. Boni, C. Wrzesinski et al., “Increased intensity lymphodepletion and adoptive immunotherapy—how far can we go?” Nature Clinical Practice Oncology, vol. 3, no. 12, pp. 668–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  62. M. Anraku, T. Tagawa, L. Wu et al., “Synergistic antitumor effects of regulatory T cell blockade combined with pemetrexed in murine malignant mesothelioma,” The Journal of Immunology, vol. 185, no. 2, pp. 956–966, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. C. T. Garnett, J. Schlom, and J. W. Hodge, “Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement,” Clinical Cancer Research, vol. 14, no. 11, pp. 3536–3544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. K. L. Knutson, Y. Dang, H. Lu et al., “IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice,” The Journal of Immunology, vol. 177, no. 1, pp. 84–91, 2006. View at Publisher · View at Google Scholar · View at Scopus
  65. G. C. Cesana, G. DeRaffele, S. Cohen et al., “Characterization of CD4+CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma,” Journal of Clinical Oncology, vol. 24, no. 7, pp. 1169–1177, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. M. E. Dudley, J. R. Wunderlich, P. F. Robbins et al., “Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes,” Science, vol. 298, no. 5594, pp. 850–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. E. B. Golden, I. Pellicciotta, S. Demaria, M. H. Barcellos-Hoff, and S. C. Formenti, “The convergence of radiation and immunogenic cell death signaling pathways,” Frontiers in Oncology, vol. 2, article 88, Article ID Article 88, 2012. View at Publisher · View at Google Scholar · View at Scopus
  68. D. R. Green, T. Ferguson, L. Zitvogel, and G. Kroemer, “Immunogenic and tolerogenic cell death,” Nature Reviews Immunology, vol. 9, no. 5, pp. 353–363, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. M. Obeid, T. Panaretakis, N. Joza et al., “Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis,” Cell Death and Differentiation, vol. 14, no. 10, pp. 1848–1850, 2007. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Obeid, A. Tesniere, T. Panaretakis et al., “Ecto-calreticulin in immunogenic chemotherapy,” Immunological Reviews, vol. 220, no. 1, pp. 22–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. V. Shahabi, M. A. Postow, D. Tuck, and J. D. Wolchok, “Immune-priming of the tumor microenvironment by radiotherapy: rationale for combination with immunotherapy to improve anticancer efficacy,” American Journal of Clinical Oncology: Cancer Clinical Trials, vol. 38, no. 1, pp. 90–97, 2015. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Apetoh, F. Ghiringhelli, A. Tesniere et al., “Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy,” Nature Medicine, vol. 13, no. 9, pp. 1050–1059, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. B. C. Burnette, H. Liang, Y. Lee et al., “The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity,” Cancer Research, vol. 71, no. 7, pp. 2488–2496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  74. Y. Lee, S. L. Auh, Y. Wang et al., “Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment,” Blood, vol. 114, no. 3, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. E. A. Reits, J. W. Hodge, C. A. Herberts et al., “Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy,” Journal of Experimental Medicine, vol. 203, no. 5, pp. 1259–1271, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Chakraborty, S. I. Abrams, K. Camphausen et al., “Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy,” The Journal of Immunology, vol. 170, no. 12, pp. 6338–6347, 2003. View at Publisher · View at Google Scholar · View at Scopus
  77. M. G. Ruocco, K. A. Pilones, N. Kawashima et al., “Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects,” The Journal of Clinical Investigation, vol. 122, no. 10, pp. 3718–3730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  78. K. M. Mahoney, P. D. Rennert, and G. J. Freeman, “Combination cancer immunotherapy and new immunomodulatory targets,” Nature Reviews Drug Discovery, vol. 14, no. 8, pp. 561–584, 2015. View at Publisher · View at Google Scholar
  79. N. A. Bhowmick, E. G. Neilson, and H. L. Moses, “Stromal fibroblasts in cancer initiation and progression,” Nature, vol. 432, no. 7015, pp. 332–337, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Orimo, P. B. Gupta, D. C. Sgroi et al., “Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion,” Cell, vol. 121, no. 3, pp. 335–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. A. M. Santos, J. Jung, N. Aziz, J. L. Kissil, and E. Puré, “Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice,” The Journal of Clinical Investigation, vol. 119, no. 12, pp. 3613–3625, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. T.-K. Ito, G. Ishii, H. Chiba, and A. Ochiai, “The VEGF angiogenic switch of fibroblasts is regulated by MMP-7 from cancer cells,” Oncogene, vol. 26, no. 51, pp. 7194–7203, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. Y. Zhang, H. Tang, J. Cai et al., “Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion,” Cancer Letters, vol. 303, no. 1, pp. 47–55, 2011. View at Publisher · View at Google Scholar · View at Scopus
  84. Z. G. Fridlender, J. Sun, S. Kim et al., “Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN,” Cancer Cell, vol. 16, no. 3, pp. 183–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  85. E. Tran, D. Chinnasamy, Z. Yu et al., “Immune targeting of fibroblast activation protein triggers recognition of multipotent bone marrow stromal cells and cachexia,” Journal of Experimental Medicine, vol. 210, no. 6, pp. 1125–1135, 2013. View at Publisher · View at Google Scholar · View at Scopus
  86. S. Kakarla, K. K. H. Chow, M. Mata et al., “Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma,” Molecular Therapy, vol. 21, no. 8, pp. 1611–1620, 2013. View at Publisher · View at Google Scholar · View at Scopus
  87. P. C. Schuberth, C. Hagedorn, S. M. Jensen et al., “Treatment of malignant pleural mesothelioma by fibroblast activation protein-specific re-directed T cells,” Journal of Translational Medicine, vol. 11, article 187, 2013. View at Publisher · View at Google Scholar · View at Scopus
  88. L. S. Wang, A. Lo, J. Scholler et al., “Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity,” Cancer Immunology Research, vol. 2, no. 2, pp. 154–166, 2014. View at Publisher · View at Google Scholar
  89. K. Fousek and N. Ahmed, “The Evolution of T-cell therapies for solid malignancies,” Clinical Cancer Research, vol. 21, no. 15, pp. 3384–3392, 2015. View at Publisher · View at Google Scholar
  90. C. C. Kloss, M. Condomines, M. Cartellieri, M. Bachmann, and M. Sadelain, “Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells,” Nature Biotechnology, vol. 31, no. 1, pp. 71–75, 2013. View at Publisher · View at Google Scholar · View at Scopus
  91. V. D. Fedorov, M. Themeli, and M. Sadelain, “PD-1– and CTLA-4–based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses,” Science Translational Medicine, vol. 5, no. 215, Article ID 215ra172, 2013. View at Publisher · View at Google Scholar
  92. S. Srivastava and S. R. Riddell, “Engineering CAR-T cells: design concepts,” Trends in Immunology, vol. 36, no. 8, pp. 494–502, 2015. View at Publisher · View at Google Scholar
  93. Z. Grada, M. Hegde, T. Byrd et al., “TanCAR: a novel bispecific chimeric antigen receptor for cancer immunotherapy,” Molecular Therapy—Nucleic Acids, vol. 2, article e105, 2013. View at Publisher · View at Google Scholar · View at Scopus
  94. C. Yee, J. A. Thompson, D. Byrd et al., “Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 25, pp. 16168–16173, 2002. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Khaleghi, F. Rahbarizadeh, D. Ahmadvand, M. J. Rasaee, and P. Pognonec, “A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells,” International Journal of Hematology, vol. 95, no. 4, pp. 434–444, 2012. View at Publisher · View at Google Scholar · View at Scopus
  96. V. Hoyos, B. Savoldo, C. Quintarelli et al., “Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety,” Leukemia, vol. 24, no. 6, pp. 1160–1170, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. L. E. Budde, C. Berger, Y. Lin et al., “Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma,” PLoS ONE, vol. 8, no. 12, Article ID e82742, 2013. View at Publisher · View at Google Scholar · View at Scopus
  98. G. J. Freeman, A. J. Long, Y. Iwai et al., “Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation,” The Journal of Experimental Medicine, vol. 192, no. 7, pp. 1027–1034, 2000. View at Publisher · View at Google Scholar · View at Scopus
  99. H. Dong, S. E. Strome, D. R. Salomao et al., “Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion,” Nature Medicine, vol. 8, no. 8, pp. 793–800, 2002. View at Publisher · View at Google Scholar
  100. Y. Iwai, M. Ishida, Y. Tanaka, T. Okazaki, T. Honjo, and N. Minato, “Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12293–12297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. S. L. Topalian, F. S. Hodi, J. R. Brahmer et al., “Safety, activity, and immune correlates of anti-PD-1 antibody in cancer,” The New England Journal of Medicine, vol. 366, no. 26, pp. 2443–2454, 2012. View at Publisher · View at Google Scholar · View at Scopus
  102. J. R. Brahmer, C. G. Drake, I. Wollner et al., “Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates,” Journal of Clinical Oncology, vol. 28, no. 19, pp. 3167–3175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  103. S. L. Topalian, C. G. Drake, and D. M. Pardoll, “Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity,” Current Opinion in Immunology, vol. 24, no. 2, pp. 207–212, 2012. View at Publisher · View at Google Scholar · View at Scopus
  104. I. Le Mercier, J. L. Lines, and R. J. Noelle, “Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators,” Frontiers in Immunology, vol. 6, article 418, 2015. View at Publisher · View at Google Scholar
  105. A. G. Niethammer, H. Wodrich, M. Loeffler et al., “Multidrug resistance-1 (MDR-1): a new target for T cell-based immunotherapy,” The FASEB Journal, vol. 19, no. 1, pp. 158–159, 2005. View at Publisher · View at Google Scholar · View at Scopus
  106. P. Liu, L. Chen, and X. Huang, “The antitumor effects of CIK cells combined with docetaxel against drug-resistant lung adenocarcinoma cell line SPC-A1/DTX in vitro and in vivo,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 1, pp. 91–98, 2009. View at Publisher · View at Google Scholar · View at Scopus