Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016, Article ID 4368101, 14 pages
http://dx.doi.org/10.1155/2016/4368101
Review Article

Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling

1Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan
2Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
3National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan
4Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 11221, Taiwan
5Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan

Received 18 September 2016; Revised 22 November 2016; Accepted 5 December 2016

Academic Editor: Andréia M. Cardoso

Copyright © 2016 Da-Wei Yeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Colotta, P. Allavena, A. Sica, C. Garlanda, and A. Mantovani, “Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability,” Carcinogenesis, vol. 30, no. 7, pp. 1073–1081, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Elinav, R. Nowarski, C. A. Thaiss, B. Hu, C. Jin, and R. A. Flavell, “Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms,” Nature Reviews Cancer, vol. 13, no. 11, pp. 759–771, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. S. I. Grivennikov, F. R. Greten, and M. Karin, “Immunity, inflammation, and cancer,” Cell, vol. 140, no. 6, pp. 883–899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. M. R. Junttila and F. J. de Sauvage, “Influence of tumour micro-environment heterogeneity on therapeutic response,” Nature, vol. 501, no. 7467, pp. 346–354, 2013. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Hoesel and J. A. Schmid, “The complexity of NF-κB signaling in inflammation and cancer,” Molecular Cancer, vol. 12, no. 1, article 86, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Lawrence, “The nuclear factor NF-kappaB pathway in inflammation,” Cold Spring Harbor Perspectives in Biology, vol. 1, no. 6, Article ID a001651, 2009. View at Google Scholar
  8. A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-related inflammation,” Nature, vol. 454, no. 7203, pp. 436–444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. J. A. DiDonato, F. Mercurio, and M. Karin, “NF-κB and the link between inflammation and cancer,” Immunological Reviews, vol. 246, no. 1, pp. 379–400, 2012. View at Publisher · View at Google Scholar
  10. C. Gasparini and M. Feldmann, “NF-κB as a target for modulating inflammatory responses,” Current Pharmaceutical Design, vol. 18, no. 35, pp. 5735–5745, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. F. H. Sarkar, Y. Li, Z. Wang, and D. Kong, “NF-κB signaling pathway and its therapeutic implications in human diseases,” International Reviews of Immunology, vol. 27, no. 5, pp. 293–319, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Colak and J. P. Medema, “Cancer stem cells—important players in tumor therapy resistance,” FEBS Journal, vol. 281, no. 21, pp. 4779–4791, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Magee, E. Piskounova, and S. J. Morrison, “Cancer stem cells: impact, heterogeneity, and uncertainty,” Cancer Cell, vol. 21, no. 3, pp. 283–296, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. D. Mertins, “Cancer stem cells: a systems biology view of their role in prognosis and therapy,” Anti-Cancer Drugs, vol. 25, no. 4, pp. 353–367, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem cells, cancer, and cancer stem cells,” Nature, vol. 414, no. 6859, pp. 105–111, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. J. E. Visvader and G. J. Lindeman, “Cancer stem cells in solid tumours: accumulating evidence and unresolved questions,” Nature Reviews Cancer, vol. 8, no. 10, pp. 755–768, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Korkaya, S. Liu, and M. S. Wicha, “Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots,” Clinical Cancer Research, vol. 17, no. 19, pp. 6125–6129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Shigdar, Y. Li, S. Bhattacharya et al., “Inflammation and cancer stem cells,” Cancer Letters, vol. 345, no. 2, pp. 271–278, 2014. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Zhou, J. Liu, Y. Tang, and X. Liang, “Inflammation linking EMT and cancer stem cells,” Oral Oncology, vol. 48, no. 11, pp. 1068–1075, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Birnie, S. D. Bryce, C. Roome et al., “Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions,” Genome Biology, vol. 9, no. 5, article R83, 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. J. M. Garner, M. Fan, C. H. Yang et al., “Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the notch pathway,” The Journal of Biological Chemistry, vol. 288, no. 36, pp. 26167–26176, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. V. K. Rajasekhar, L. Studer, W. Gerald, N. D. Socci, and H. I. Scher, “Tumour-initiating stem-like cells in human prostate cancer exhibit increased NF-κB signalling,” Nature Communications, vol. 2, article 162, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Yamashina, M. Baghdadi, A. Yoneda et al., “Cancer stem-like cells derived from chemoresistant tumors have a unique capacity to prime tumorigenic myeloid cells,” Cancer Research, vol. 74, no. 10, pp. 2698–2709, 2014. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Chen, J. Huang, W. Gong, P. Iribarren, N. M. Dunlop, and J. M. Wang, “Toll-like receptors in inflammation, infection and cancer,” International Immunopharmacology, vol. 7, no. 10, pp. 1271–1285, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Hoebe, Z. Jiang, P. Georgel et al., “TLR signaling pathways: opportunities for activation and blockade in pursuit of therapy,” Current Pharmaceutical Design, vol. 12, no. 32, pp. 4123–4134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. A. M. Piccinini and K. S. Midwood, “DAMPening inflammation by modulating TLR signalling,” Mediators of Inflammation, vol. 2010, Article ID 672395, 21 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. M. P. Belvin and K. V. Anderson, “A conserved signaling pathway: the Drosophila toll-dorsal pathway,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 393–416, 1996. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Kawai and S. Akira, “Signaling to NF-κB by Toll-like receptors,” Trends in Molecular Medicine, vol. 13, no. 11, pp. 460–469, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Hashimoto, K. L. Hudson, and K. V. Anderson, “The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein,” Cell, vol. 52, no. 2, pp. 269–279, 1988. View at Publisher · View at Google Scholar · View at Scopus
  30. T.-H. Chuang and R. J. Ulevitch, “Identification of hTLR10: a novel human Toll-like receptor preferentially expressed in immune cells,” Biochimica et Biophysica Acta—Gene Structure and Expression, vol. 1518, no. 1-2, pp. 157–161, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. F. L. Rock, G. Hardiman, J. C. Timans, R. A. Kastelein, and J. F. Bazan, “A family of human receptors structurally related to Drosophila Toll,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 2, pp. 588–593, 1998. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Takeda and S. Akira, “TLR signaling pathways,” Seminars in Immunology, vol. 16, no. 1, pp. 3–9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. A. O. Aliprantis, R.-B. Yang, M. R. Mark et al., “Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2,” Science, vol. 285, no. 5428, pp. 736–739, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. P. S. Coelho, A. Klein, A. Talvani et al., “Glycosylphosphatidylinositol-anchored mucin-like glycoproteins isolated from Trypanosoma cruzi trypomastigotes induce in vivo leukocyte recruitment dependent on MCP-1 production by IFN-gamma-primed-macrophages,” Journal of Leukocyte Biology, vol. 71, no. 5, pp. 837–844, 2002. View at Google Scholar · View at Scopus
  35. C. A. Janeway Jr. and R. Medzhitov, “Innate immune recognition,” Annual Review of Immunology, vol. 20, pp. 197–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Massari, P. Henneke, Y. Ho, E. Latz, D. T. Golenbock, and L. M. Wetzler, “Cutting edge: immune stimulation by neisserial porins is toll-like receptor 2 and MyD88 dependent,” The Journal of Immunology, vol. 168, no. 4, pp. 1533–1537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. T. K. Means, S. Wang, E. Lien, A. Yoshimura, D. T. Golenbock, and M. J. Fenton, “Human Toll-like receptors mediate cellular activation by Mycobacterium tuberculosis,” Journal of Immunology, vol. 163, no. 7, pp. 3920–3927, 1999. View at Google Scholar · View at Scopus
  38. R. Schwandner, R. Dziarski, H. Wesche, M. Rothe, and C. J. Kirschning, “Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2,” The Journal of Biological Chemistry, vol. 274, no. 25, pp. 17406–17409, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. M. Underhill, A. Ozinsky, A. M. Hajjar et al., “The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens,” Nature, vol. 401, no. 6755, pp. 811–815, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. A. Ozinsky, D. M. Underhill, J. D. Fontenot et al., “The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13766–13771, 2000. View at Publisher · View at Google Scholar · View at Scopus
  41. O. Takeuchi, T. Kawai, P. F. Mühlradt et al., “Discrimination of bacterial lipoproteins by toll-like receptor 6,” International Immunology, vol. 13, no. 7, pp. 933–940, 2001. View at Publisher · View at Google Scholar · View at Scopus
  42. O. Takeuchi, S. Sato, T. Horiuchi et al., “Cutting edge: role of toll-like receptor 1 in mediating immune response to microbial lipoproteins,” The Journal of Immunology, vol. 169, no. 1, pp. 10–14, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Alexopoulou, A. C. Holt, R. Medzhitov, and R. A. Flavell, “Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3,” Nature, vol. 413, no. 6857, pp. 732–738, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Medzhitov, P. Preston-Hurlburt, and C. A. Janeway Jr., “A human homologue of the Drosophila toll protein signals activation of adaptive immunity,” Nature, vol. 388, no. 6640, pp. 394–397, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Poltorak, X. He, I. Smirnova et al., “Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene,” Science, vol. 282, no. 5396, pp. 2085–2088, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. F. Hayashi, K. D. Smith, A. Ozinsky et al., “The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5,” Nature, vol. 410, no. 6832, pp. 1099–1103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  47. T.-H. Chuang and R. J. Ulevitch, “Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9,” European Cytokine Network, vol. 11, no. 3, pp. 372–378, 2000. View at Google Scholar · View at Scopus
  48. X. Du, A. Poltorak, Y. Wei, and B. Beutler, “Three novel mammalian toll-like receptors: gene structure, expression, and evolution,” European Cytokine Network, vol. 11, no. 3, pp. 362–371, 2000. View at Google Scholar · View at Scopus
  49. S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. Reis e Sousa, “Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA,” Science, vol. 303, no. 5663, pp. 1529–1531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. F. Heil, H. Hemmi, H. Hochrein et al., “Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8,” Science, vol. 303, no. 5663, pp. 1526–1529, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. A. M. Krieg, “The role of CpG motifs in innate immunity,” Current Opinion in Immunology, vol. 12, no. 1, pp. 35–43, 2000. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Krieg, A.-K. Yi, S. Matson et al., “CpG motifs in bacterial DNA trigger direct B-cell activation,” Nature, vol. 374, no. 6522, pp. 546–549, 1995. View at Publisher · View at Google Scholar · View at Scopus
  53. P. Matzinger, “The danger model: a renewed sense of self,” Science, vol. 296, no. 5566, pp. 301–305, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. S.-Y. Seong and P. Matzinger, “Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses,” Nature Reviews Immunology, vol. 4, no. 6, pp. 469–478, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. J. F. Curtin, N. Liu, M. Candolfi et al., “HMGB1 mediates endogenous TLR2 activation and brain tumor regression,” PLoS Medicine, vol. 6, no. 1, article e10, 2009. View at Google Scholar · View at Scopus
  56. D. Jiang, J. Liang, J. Fan et al., “Regulation of lung injury and repair by Toll-like receptors and hyaluronan,” Nature Medicine, vol. 11, no. 11, pp. 1173–1179, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Kim, H. Takahashi, W.-W. Lin et al., “Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis,” Nature, vol. 457, no. 7225, pp. 102–106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. R. Liu-Bryan, K. Pritzker, G. S. Firestein, and R. Terkeltaub, “TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation,” The Journal of Immunology, vol. 174, no. 8, pp. 5016–5023, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Liu-Bryan, P. Scott, A. Sydlaske, D. M. Rose, and R. Terkeltaub, “Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation,” Arthritis and Rheumatism, vol. 52, no. 9, pp. 2936–2946, 2005. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Schaefer, A. Babelova, E. Kiss et al., “The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages,” The Journal of Clinical Investigation, vol. 115, no. 8, pp. 2223–2233, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. R. M. Vabulas, P. Ahmad-Nejad, C. da Costa et al., “Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31332–31339, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. R. M. Vabulas, P. Ahmad-Nejad, S. Ghose, C. J. Kirschning, R. D. Issels, and H. Wagner, “HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway,” The Journal of Biological Chemistry, vol. 277, no. 17, pp. 15107–15112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  63. R. M. Vabulas, S. Braedel, N. Hilf et al., “The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway,” The Journal of Biological Chemistry, vol. 277, no. 23, pp. 20847–20853, 2002. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Biragyn, P. A. Ruffini, C. A. Leifer et al., “Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2,” Science, vol. 298, no. 5595, pp. 1025–1029, 2002. View at Publisher · View at Google Scholar · View at Scopus
  65. Y. Imai, K. Kuba, G. G. Neely et al., “Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury,” Cell, vol. 133, no. 2, pp. 235–249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. G. B. Johnson, G. J. Brunn, Y. Kodaira, and J. L. Platt, “Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4,” The Journal of Immunology, vol. 168, no. 10, pp. 5233–5239, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Midwood, S. Sacre, A. M. Piccinini et al., “Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease,” Nature Medicine, vol. 15, no. 7, pp. 774–780, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. Y. Okamura, M. Watari, E. S. Jerud et al., “The extra domain A of fibronectin activates Toll-like receptor 4,” The Journal of Biological Chemistry, vol. 276, no. 13, pp. 10229–10233, 2001. View at Publisher · View at Google Scholar · View at Scopus
  69. J. S. Park, D. Svetkauskaite, Q. He et al., “Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein,” The Journal of Biological Chemistry, vol. 279, no. 9, pp. 7370–7377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  70. S. T. Smiley, J. A. King, and W. W. Hancock, “Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4,” The Journal of Immunology, vol. 167, no. 5, pp. 2887–2894, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. B. M. Tesar, D. Jiang, J. Liang, S. M. Palmer, P. W. Noble, and D. R. Goldstein, “The role of hyaluronan degradation products as innate alloimmune agonists,” American Journal of Transplantation, vol. 6, no. 11, pp. 2622–2635, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. F. J. Barrat, T. Meeker, J. Gregorio et al., “Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus,” The Journal of Experimental Medicine, vol. 202, no. 8, pp. 1131–1139, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Karikó, H. Ni, J. Capodici, M. Lamphier, and D. Weissman, “mRNA is an endogenous ligand for Toll-like receptor 3,” The Journal of Biological Chemistry, vol. 279, no. 13, pp. 12542–12550, 2004. View at Publisher · View at Google Scholar · View at Scopus
  74. E. A. Leadbetter, I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein, “Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors,” Nature, vol. 416, no. 6881, pp. 603–607, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Vollmer, S. Tluk, C. Schmitz et al., “Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8,” Journal of Experimental Medicine, vol. 202, no. 11, pp. 1575–1585, 2005. View at Publisher · View at Google Scholar · View at Scopus
  76. L. A. J. O'Neill and A. G. Bowie, “The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling,” Nature Reviews Immunology, vol. 7, no. 5, pp. 353–364, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. L. A. J. O'Neill, K. A. Fitzgerald, and A. G. Bowie, “The Toll-IL-1 receptor adaptor family grows to five members,” Trends in Immunology, vol. 24, no. 6, pp. 286–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Ninomiya-Tsuji, K. Kishimoto, A. Hiyama, J.-I. Inoue, Z. Cao, and K. Matsumoto, “The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway,” Nature, vol. 398, no. 6724, pp. 252–256, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Yamaguchi, K. Shirakabe, H. Shibuya et al., “Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction,” Science, vol. 270, no. 5244, pp. 2008–2011, 1995. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Wang, L. Deng, M. Hong, G. R. Akkaraju, J.-I. Inoue, and Z. J. Chen, “TAK1 is a ubiquitin-dependent kinase of MKK and IKK,” Nature, vol. 412, no. 6844, pp. 346–351, 2001. View at Publisher · View at Google Scholar · View at Scopus
  81. L. Deng, C. Wang, E. Spencer et al., “Activation of the Iκb kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain,” Cell, vol. 103, no. 2, pp. 351–361, 2000. View at Publisher · View at Google Scholar · View at Scopus
  82. K. A. Fitzgerald, D. C. Rowe, B. J. Barnes et al., “LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF,” Journal of Experimental Medicine, vol. 198, no. 7, pp. 1043–1055, 2003. View at Publisher · View at Google Scholar · View at Scopus
  83. E. Meylan, K. Burns, K. Hofmann et al., “RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation,” Nature Immunology, vol. 5, no. 5, pp. 503–507, 2004. View at Google Scholar · View at Scopus
  84. Z. J. Chen, “Ubiquitin signalling in the NF-κB pathway,” Nature Cell Biology, vol. 7, no. 8, pp. 758–765, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. A. Bibeau-Poirier and M. J. Servant, “Roles of ubiquitination in pattern-recognition receptors and type I interferon receptor signaling,” Cytokine, vol. 43, no. 3, pp. 359–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  86. M. J. Clague, C. Heride, and S. Urbé, “The demographics of the ubiquitin system,” Trends in Cell Biology, vol. 25, no. 7, pp. 417–426, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. E. W. Harhaj and V. M. Dixit, “Regulation of NF-κB by deubiquitinases,” Immunological Reviews, vol. 246, no. 1, pp. 107–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  88. D. Popovic, D. Vucic, and I. Dikic, “Ubiquitination in disease pathogenesis and treatment,” Nature Medicine, vol. 20, no. 11, pp. 1242–1253, 2014. View at Publisher · View at Google Scholar · View at Scopus
  89. J. Zinngrebe, A. Montinaro, N. Peltzer, and H. Walczak, “Ubiquitin in the immune system,” EMBO Reports, vol. 15, no. 1, pp. 28–45, 2014. View at Publisher · View at Google Scholar · View at Scopus
  90. D. C. Scherer, J. A. Brockman, Z. Chen, T. Maniatis, and D. W. Ballard, “Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 24, pp. 11259–11263, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Tan, S. Y. Fuchs, A. Chen et al., “Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα,” Molecular Cell, vol. 3, no. 4, pp. 527–533, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. K. Schweitzer, P. M. Bozko, W. Dubiel, and M. Naumann, “CSN controls NF-κB by deubiquitinylation of IκBα,” The EMBO Journal, vol. 26, no. 6, pp. 1532–1541, 2007. View at Google Scholar
  93. T. Yamaguchi, J. Kimura, Y. Miki, and K. Yoshida, “The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha),” The Journal of Biological Chemistry, vol. 282, no. 47, pp. 33943–33948, 2007. View at Google Scholar
  94. C. Fearns, Q. Pan, J. C. Mathison, and T.-H. Chuang, “Triad3A regulates ubiquitination and proteasomal degradation of RIP1 following disruption of Hsp90 binding,” The Journal of Biological Chemistry, vol. 281, no. 45, pp. 34592–34600, 2006. View at Publisher · View at Google Scholar · View at Scopus
  95. A. Mansell, R. Smith, S. L. Doyle et al., “Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation,” Nature Immunology, vol. 7, no. 2, pp. 148–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  96. E. Burstein, J. E. Hoberg, A. S. Wilkinson et al., “COMMD proteins, a novel family of structural and functional homologs of MURR1,” The Journal of Biological Chemistry, vol. 280, no. 23, pp. 22222–22232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  97. G. N. Maine, X. Mao, C. M. Komarck, and E. Burstein, “COMMD1 promotes the ubiquitination of NF-κB subunits through a cullin-containing ubiquitin ligase,” The EMBO Journal, vol. 26, no. 2, pp. 436–447, 2007. View at Publisher · View at Google Scholar · View at Scopus
  98. A. Ryo, F. Suizu, Y. Yoshida et al., “Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA,” Molecular Cell, vol. 12, no. 6, pp. 1413–1426, 2003. View at Publisher · View at Google Scholar · View at Scopus
  99. T. Tanaka, M. J. Grusby, and T. Kaisho, “PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit,” Nature Immunology, vol. 8, no. 6, pp. 584–591, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. T. Tanaka, A. Shibazaki, R. Ono, and T. Kaisho, “HSP70 mediates degradation of the p65 subunit of nuclear factor κb to inhibit inflammatory signaling,” Science Signaling, vol. 7, no. 356, Article ID ra119, 2014. View at Publisher · View at Google Scholar · View at Scopus
  101. D. L. Boone, E. E. Turer, E. G. Lee et al., “The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses,” Nature Immunology, vol. 5, no. 10, pp. 1052–1060, 2004. View at Google Scholar
  102. S. Daubeuf, D. Singh, Y. Tan et al., “HSV ICP0 recruits USP7 to modulate TLR-mediated innate response,” Blood, vol. 113, no. 14, pp. 3264–3275, 2009. View at Publisher · View at Google Scholar · View at Scopus
  103. Y.-H. Fan, Y. Yu, R.-F. Mao et al., “USP4 targets TAK1 to downregulate TNFα-induced NF-κB activation,” Cell Death and Differentiation, vol. 18, no. 10, pp. 1547–1560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. X. He, Y. Li, C. Li et al., “USP2a negatively regulates IL-1β- and virus-induced NF-κB activation by deubiquitinating TRAF6,” Journal of Molecular Cell Biology, vol. 5, no. 1, pp. 39–47, 2013. View at Publisher · View at Google Scholar · View at Scopus
  105. O. Hitotsumatsu, R.-C. Ahmad, R. Tavares et al., “The ubiquitin-editing enzyme A20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals,” Immunity, vol. 28, no. 3, pp. 381–390, 2008. View at Publisher · View at Google Scholar · View at Scopus
  106. H. Jono, J. H. Lim, L.-F. Chen et al., “NF-κB is essential for induction of CYLD, the negative regulator of NF-κB: evidence for a novel inducible autoregulatory feedback pathway,” The Journal of Biological Chemistry, vol. 279, no. 35, pp. 36171–36174, 2004. View at Publisher · View at Google Scholar · View at Scopus
  107. B.-C. Lee, M. Miyata, J. H. Lim, and J.-D. Li, “Deubiquitinase CYLD acts as a negative regulator for bacterium NTHi-induced inflammation by suppressing K63-linked ubiquitination of MyD88,” Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 2, pp. E165–E171, 2016. View at Publisher · View at Google Scholar · View at Scopus
  108. L. Li, N. Soetandyo, Q. Wang, and Y. Ye, “The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation,” Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, vol. 1793, no. 2, pp. 346–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  109. D. Lin, M. Zhang, M.-X. Zhang et al., “Induction of USP25 by viral infection promotes innate antiviral responses by mediating the stabilization of TRAF3 and TRAF6,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 36, pp. 11324–11329, 2015. View at Publisher · View at Google Scholar · View at Scopus
  110. X. Liu, H. Li, B. Zhong et al., “Usp18 inhibits NF-κb and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex,” Journal of Experimental Medicine, vol. 210, no. 8, pp. 1575–1590, 2013. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Mauro, F. Pacifico, A. Lavorgna et al., “ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB,” The Journal of Biological Chemistry, vol. 281, no. 27, pp. 18482–18488, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. E. Trompouki, E. Hatzivassillou, T. Tsichritzis, H. Farmer, A. Ashworth, and G. Mosialos, “CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members,” Nature, vol. 424, no. 6950, pp. 793–796, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. W. Wang, X. Huang, H.-B. Xin, M. Fu, A. Xue, and Z.-H. Wu, “TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase,” The Journal of Biological Chemistry, vol. 290, no. 21, pp. 13372–13385, 2015. View at Publisher · View at Google Scholar · View at Scopus
  114. I. E. Wartz, K. M. O'Rourke, H. Zhou et al., “De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling,” Nature, vol. 430, no. 7000, pp. 694–699, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. A. Wright, W. W. Reiley, M. Chang et al., “Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD,” Developmental Cell, vol. 13, no. 5, pp. 705–716, 2007. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Xiao, H. Li, J. Luo et al., “Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFα-induced cancer cell migration,” Biochemical Journal, vol. 441, no. 3, pp. 979–986, 2012. View at Publisher · View at Google Scholar · View at Scopus
  117. G. Xu, X. Tan, H. Wang et al., “Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor α-induced nuclear factor κB activation via binding to and deubiquitinating receptor-interacting protein 1,” The Journal of Biological Chemistry, vol. 285, no. 2, pp. 969–978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. Z. Yang, H. Xian, J. Hu et al., “USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms,” Scientific Reports, vol. 5, article 12738, 2015. View at Publisher · View at Google Scholar · View at Scopus
  119. H. Yoshida, H. Jono, H. Kai, and J.-D. Li, “The tumor suppressor cylindromatosis (CYLD) acts as a negative regulator for toll-like receptor 2 signaling via negative cross-talk with TRAF6 and TRAF7,” The Journal of Biological Chemistry, vol. 280, no. 49, pp. 41111–41121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  120. B. Zhong, X. Liu, X. Wang et al., “Negative regulation of IL-17-mediated signaling and inflammation by the ubiquitin-specific protease USP25,” Nature Immunology, vol. 13, no. 11, pp. 1110–1117, 2012. View at Publisher · View at Google Scholar · View at Scopus
  121. H. Zhong, D. Wang, L. Fang et al., “Ubiquitin-specific proteases 25 negatively regulates virus-induced type I interferon signaling,” PLoS ONE, vol. 8, no. 11, Article ID e80976, 2013. View at Publisher · View at Google Scholar · View at Scopus
  122. F. Zhou, X. Zhang, H. van Dams, P. Ten Dijkes, H. Huang, and L. Zhang, “Ubiquitin-specific protease 4 mitigates toll-like/interleukin-1 receptor signaling and regulates innate immune activation,” The Journal of Biological Chemistry, vol. 287, no. 14, pp. 11002–11010, 2012. View at Publisher · View at Google Scholar · View at Scopus
  123. J. Niu, Y. Shi, J. Xue et al., “USP10 inhibits genotoxic NF-κB activation by MCPIP1-facilitated deubiquitination of NEMO,” The EMBO Journal, vol. 32, no. 24, pp. 3206–3219, 2013. View at Publisher · View at Google Scholar · View at Scopus
  124. S. González-Reyes, L. Marín, L. González et al., “Study of TLR3, TLR4 and TLR9 in breast carcinomas and their association with metastasis,” BMC Cancer, vol. 10, article 665, 2010. View at Publisher · View at Google Scholar · View at Scopus
  125. H. D. Park, Y. Lee, Y. K. Oh et al., “Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation,” Oncogene, vol. 30, no. 2, pp. 201–211, 2011. View at Publisher · View at Google Scholar · View at Scopus
  126. Y. Sato, Y. Goto, N. Narita, and D. S. B. Hoon, “Cancer cells expressing toll-like receptors and the tumor microenvironment,” Cancer Microenvironment, vol. 2, supplement 1, pp. S205–S214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. I. Sheyhidin, G. Nabi, A. Hasim et al., “Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma,” World Journal of Gastroenterology, vol. 17, no. 32, pp. 3745–3751, 2011. View at Publisher · View at Google Scholar · View at Scopus
  128. R. Tewari, S. R. Choudhury, S. Ghosh, V. S. Mehta, and E. Sen, “Involvement of TNFα-induced TLR4–NF-κB and TLR4–HIF-1α feed-forward loops in the regulation of inflammatory responses in glioma,” Journal of Molecular Medicine, vol. 90, no. 1, pp. 67–80, 2012. View at Publisher · View at Google Scholar · View at Scopus
  129. N. Muñoz, X. Castellsagué, A. B. de González, and L. Gissmann, “Chapter 1: HPV in the etiology of human cancer,” Vaccine, vol. 24, supplement 3, pp. S1–S10, 2006. View at Publisher · View at Google Scholar · View at Scopus
  130. J. Parsonnet, G. D. Friedman, D. P. Vandersteen et al., “Helicobacter pylori infection and the risk of gastric carcinoma,” The New England Journal of Medicine, vol. 325, no. 16, pp. 1127–1131, 1991. View at Publisher · View at Google Scholar · View at Scopus
  131. H. B. El-Serag, “Epidemiology of viral hepatitis and hepatocellular carcinoma,” Gastroenterology, vol. 142, no. 6, pp. 1264.e1–1273.e1, 2012. View at Publisher · View at Google Scholar · View at Scopus
  132. G. Srikrishna and H. H. Freeze, “Endogenous damage-associated molecular pattern molecules at the crossroads of inflammation and cancer,” Neoplasia, vol. 11, no. 7, pp. 615–628, 2009. View at Publisher · View at Google Scholar · View at Scopus
  133. M. P. Duyao, A. J. Buckler, and G. E. Sonenshein, “Interaction of an NF-κB-like factor with a site upstream of the c-myc promoter,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4727–4731, 1990. View at Publisher · View at Google Scholar · View at Scopus
  134. D. C. Guttridge, C. Albanese, J. Y. Reuther, R. G. Pestell, and A. S. Baldwin Jr., “NF-κB controls cell growth and differentiation through transcriptional regulation of cyclin D1,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5785–5799, 1999. View at Publisher · View at Google Scholar · View at Scopus
  135. T. A. Libermann and D. Baltimore, “Activation of interleukin-6 gene expression through the NF-κB transcription factor,” Molecular and Cellular Biology, vol. 10, no. 5, pp. 2327–2334, 1990. View at Publisher · View at Google Scholar · View at Scopus
  136. R. Schreck and P. A. Baeuerle, “NF-κB as inducible transcriptional activator of the granulocyte-macrophage colony-stimulating factor gene,” Molecular and Cellular Biology, vol. 10, no. 3, pp. 1281–1286, 1990. View at Publisher · View at Google Scholar · View at Scopus
  137. L. A. Schubert, R. Q. Cron, A. M. Cleary et al., “A T cell-specific enhancer of the human CD40 ligand gene,” Journal of Biological Chemistry, vol. 277, no. 9, pp. 7386–7395, 2002. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Serfling, R. Barthelmas, I. Pfeuffer et al., “Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes,” EMBO Journal, vol. 8, no. 2, pp. 465–473, 1989. View at Google Scholar · View at Scopus
  139. S. Ghosh and M. Karin, “Missing pieces in the NF-κB puzzle,” Cell, vol. 109, no. 2, pp. S81–S96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  140. L. Farnebo, A. Shahangian, Y. Lee, J. H. Shin, F. A. Scheeren, and J. B. Sunwoo, “Targeting Toll-like receptor 2 inhibits growth of head and neck squamous cell carcinoma,” Oncotarget, vol. 6, no. 12, pp. 9897–9907, 2015. View at Publisher · View at Google Scholar · View at Scopus
  141. B. Huang, J. Zhao, S. Shen et al., “Listeria monocytogenes promotes tumor growth via tumor cell toll-like receptor 2 signaling,” Cancer Research, vol. 67, no. 9, pp. 4346–4352, 2007. View at Publisher · View at Google Scholar · View at Scopus
  142. W. Shi, S. Lihui, Q. Li et al., “Suppression of toll-like receptor 2 expression inhibits the bioactivity of human hepatocellular carcinoma,” Tumor Biology, vol. 35, no. 10, pp. 9627–9637, 2014. View at Publisher · View at Google Scholar · View at Scopus
  143. F. A. Scheeren, A. H. Kuo, L. J. Van Weele et al., “A cell-intrinsic role for TLR2-MYD88 in intestinal and breast epithelia and oncogenesis,” Nature Cell Biology, vol. 16, no. 12, pp. 1238–1248, 2014. View at Publisher · View at Google Scholar · View at Scopus
  144. H. Tye, C. L. Kennedy, M. Najdovska et al., “STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation,” Cancer Cell, vol. 22, no. 4, pp. 466–478, 2012. View at Publisher · View at Google Scholar · View at Scopus
  145. C.-C. Hsiao, P.-H. Chen, C.-I. Cheng et al., “Toll-like receptor-4 is a target for suppression of proliferation and chemoresistance in HepG2 hepatoblastoma cells,” Cancer Letters, vol. 368, no. 1, pp. 144–152, 2015. View at Publisher · View at Google Scholar · View at Scopus
  146. M. J. Szczepanski, M. Czystowska, M. Szajnik et al., “Triggering of toll-like receptor 4 expressed on human head and neck squamous cell carcinoma promotes tumor development and protects the tumor from immune attack,” Cancer Research, vol. 69, no. 7, pp. 3105–3113, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. H. Yang, B. Wang, T. Wang et al., “Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis,” PLoS ONE, vol. 9, no. 10, Article ID e109980, 2014. View at Publisher · View at Google Scholar · View at Scopus
  148. H. Yang, H. Zhou, P. Feng et al., “Reduced expression of Toll-like receptor 4 inhibits human breast cancer cells proliferation and inflammatory cytokines secretion,” Journal of Experimental and Clinical Cancer Research, vol. 29, no. 1, article no. 92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  149. W. He, Q. Liu, L. Wang, W. Chen, N. Li, and X. Cao, “TLR4 signaling promotes immune escape of human lung cancer cells by inducing immunosuppressive cytokines and apoptosis resistance,” Molecular Immunology, vol. 44, no. 11, pp. 2850–2859, 2007. View at Publisher · View at Google Scholar · View at Scopus
  150. D. H. Dapito, A. Mencin, G.-Y. Gwak et al., “Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4,” Cancer Cell, vol. 21, no. 4, pp. 504–516, 2012. View at Publisher · View at Google Scholar · View at Scopus
  151. M. Fukata, A. Chen, A. S. Vamadevan et al., “Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors,” Gastroenterology, vol. 133, no. 6, pp. 1869–1881, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Cherfils-Vicini, S. Platonova, M. Gillard et al., “Triggering of TLR7 and TLR8 expressed by human lung cancer cells induces cell survival and chemoresistance,” The Journal of Clinical Investigation, vol. 120, no. 4, pp. 1285–1297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  153. D. Moreira, Q. Zhang, D. M. S. Hossain et al., “TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells,” Oncotarget, vol. 6, no. 19, pp. 17302–17313, 2015. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Ochi, C. S. Graffeo, C. P. Zambirinis et al., “Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans,” Journal of Clinical Investigation, vol. 122, no. 11, pp. 4118–4129, 2012. View at Publisher · View at Google Scholar · View at Scopus
  155. E.-J. Song, M.-J. Kang, Y.-S. Kim et al., “Flagellin promotes the proliferation of gastric cancer cells via the Toll-like receptor 5,” International Journal of Molecular Medicine, vol. 28, no. 1, pp. 115–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. S. González-Reyes, J. M. Fernández, L. O. González et al., “Study of TLR3, TLR4, and TLR9 in prostate carcinomas and their association with biochemical recurrence,” Cancer Immunology, Immunotherapy, vol. 60, no. 2, pp. 217–226, 2011. View at Publisher · View at Google Scholar · View at Scopus
  157. R. Cammarota, V. Bertolini, G. Pennesi et al., “The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker,” Journal of Translational Medicine, vol. 8, article 112, 2010. View at Publisher · View at Google Scholar · View at Scopus
  158. X. Chen, F. Zhao, H. Zhang, Y. Zhu, K. Wu, and G. Tan, “Significance of TLR4/MyD88 expression in breast cancer,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 6, pp. 7034–7039, 2015. View at Google Scholar · View at Scopus
  159. F.-J. Ma, Z.-B. Liu, X. Hu et al., “Prognostic value of myeloid differentiation primary response 88 and toll-like receptor 4 in breast cancer patients,” PLoS ONE, vol. 9, no. 10, Article ID e111639, 2014. View at Publisher · View at Google Scholar · View at Scopus
  160. S. Chatterjee, L. Crozet, D. Damotte et al., “TLR7 promotes tumor progression, chemotherapy resistance, and poor clinical outcomes in non-small cell lung cancer,” Cancer Research, vol. 74, no. 18, pp. 5008–5018, 2014. View at Publisher · View at Google Scholar · View at Scopus
  161. R. Berger, H. Fiegl, G. Goebel et al., “Toll-like receptor 9 expression in breast and ovarian cancer is associated with poorly differentiated tumors,” Cancer Science, vol. 101, no. 4, pp. 1059–1066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  162. C. Wang, S. Cao, Y. Yan et al., “TLR9 expression in glioma tissues correlated to glioma progression and the prognosis of GBM patients,” BMC Cancer, vol. 10, article no. 415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  163. M. Dajon, K. Iribarren, and I. Cremer, “Toll-like receptor stimulation in cancer: a pro- and anti-tumor double-edged sword,” Immunobiology, vol. 222, no. 1, pp. 89–100, 2017. View at Publisher · View at Google Scholar
  164. M. Voulgarelis and S. Ioannou, “Toll-like receptors, tissue injury, and tumourigenesis,” Mediators of Inflammation, vol. 2010, Article ID 581837, 9 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  165. L. A. Ridnour, R. Y. S. Cheng, C. H. Switzer et al., “Molecular pathways: toll-like receptors in the tumor microenvironment—poor prognosis or new therapeutic opportunity,” Clinical Cancer Research, vol. 19, no. 6, pp. 1340–1346, 2013. View at Publisher · View at Google Scholar · View at Scopus
  166. I. Chefetz, A. B. Alvero, J. C. Holmberg et al., “TLR2 enhances ovarian cancer stem cell self-renewal and promotes tumor repair and recurrence,” Cell Cycle, vol. 12, no. 3, pp. 511–521, 2013. View at Publisher · View at Google Scholar · View at Scopus
  167. D. Jia, W. Yang, L. Li et al., “β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer,” Cell Death and Differentiation, vol. 22, no. 2, pp. 298–310, 2015. View at Publisher · View at Google Scholar · View at Scopus
  168. W.-T. Liu, Y.-Y. Jing, G.-F. Yu et al., “Toll like receptor 4 facilitates invasion and migration as a cancer stem cell marker in hepatocellular carcinoma,” Cancer Letters, vol. 358, no. 2, pp. 136–143, 2015. View at Publisher · View at Google Scholar · View at Scopus
  169. M. Liu, T. Sakamaki, M. C. Casimiro et al., “The canonical NF-κB pathway governs mammary tumorigenesis in transgenic mice and tumor stem cell expansion,” Cancer Research, vol. 70, no. 24, pp. 10464–10473, 2010. View at Publisher · View at Google Scholar · View at Scopus
  170. D. B. Uthaya Kumar, C. Chen, J. Liu et al., “TLR4 signaling via NANOG cooperates with STAT3 to activate Twist1 and promote formation of tumor-initiating stem-like cells in livers of mice,” Gastroenterology, vol. 150, no. 3, pp. 707–719, 2016. View at Publisher · View at Google Scholar
  171. L. Wang, Z. Liu, S. Balivada et al., “Interleukin-1β and transforming growth factor-β cooperate to induce neurosphere formation and increase tumorigenicity of adherent LN-229 glioma cells,” Stem Cell Research and Therapy, vol. 3, no. 1, article 5, 2012. View at Publisher · View at Google Scholar · View at Scopus
  172. Y. Li, L. Wang, L. Pappan, A. Galliher-Beckley, and J. Shi, “IL-1β promotes stemness and invasiveness of colon cancer cells through Zeb1 activation,” Molecular Cancer, vol. 11, article 87, 2012. View at Publisher · View at Google Scholar · View at Scopus
  173. G. Storci, P. Sansone, S. Mari et al., “TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype,” Journal of Cellular Physiology, vol. 225, no. 3, pp. 682–691, 2010. View at Publisher · View at Google Scholar · View at Scopus
  174. M. L. Guzman, S. J. Neering, D. Upchurch et al., “Nuclear factor-κB is constitutively activated in primitive human acute myelogenous leukemia cells,” Blood, vol. 98, no. 8, pp. 2301–2307, 2001. View at Publisher · View at Google Scholar · View at Scopus
  175. A. B. Alvero, R. Chen, H.-H. Fu et al., “Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance,” Cell Cycle, vol. 8, no. 1, pp. 158–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Murohashi, K. Hinohara, M. Kuroda et al., “Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells,” British Journal of Cancer, vol. 102, no. 1, pp. 206–212, 2010. View at Publisher · View at Google Scholar · View at Scopus
  177. M. Shipitsin, L. L. Campbell, P. Argani et al., “Molecular definition of breast tumor heterogeneity,” Cancer Cell, vol. 11, no. 3, pp. 259–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  178. S. Boumahdi, G. Driessens, G. Lapouge et al., “SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma,” Nature, vol. 511, no. 7508, pp. 246–250, 2014. View at Publisher · View at Google Scholar · View at Scopus
  179. S.-H. Chiou, C.-C. Yu, C.-Y. Huang et al., “Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma,” Clinical Cancer Research, vol. 14, no. 13, pp. 4085–4095, 2008. View at Publisher · View at Google Scholar · View at Scopus
  180. S. M. Kumar, S. Liu, H. Lu et al., “Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation,” Oncogene, vol. 31, no. 47, pp. 4898–4911, 2012. View at Publisher · View at Google Scholar · View at Scopus
  181. D. Yeh, Y. Chen, C. Lai et al., “Downregulation of COMMD1 by miR-205 promotes a positive feedback loop for amplifying inflammatory- and stemness-associated properties of cancer cells,” Cell Death and Differentiation, vol. 23, no. 5, pp. 841–852, 2015. View at Publisher · View at Google Scholar
  182. A. Nabetani, I. Hatada, H. Morisaki, M. Oshimura, and T. Mukai, “Mouse U2af1-rs1 is a neomorphic imprinted gene,” Molecular and Cellular Biology, vol. 17, no. 2, pp. 789–798, 1997. View at Publisher · View at Google Scholar · View at Scopus
  183. P. Bartuzi, M. H. Hofker, and B. van de Sluis, “Tuning NF-κB activity: a touch of COMMD proteins,” Biochimica et Biophysica Acta—Molecular Basis of Disease, vol. 1832, no. 12, pp. 2315–2321, 2013. View at Publisher · View at Google Scholar · View at Scopus
  184. G. N. Maine and E. Burstein, “COMMD proteins: COMMing to the scene,” Cellular and Molecular Life Sciences, vol. 64, no. 15, pp. 1997–2005, 2007. View at Publisher · View at Google Scholar · View at Scopus
  185. G. N. Maine and E. Burstein, “COMMD proteins and the control of the NFκB pathway,” Cell Cycle, vol. 6, no. 6, pp. 672–676, 2007. View at Publisher · View at Google Scholar · View at Scopus
  186. J. Strebovsky, P. Walker, R. Lang, and A. H. Dalpke, “Suppressor of cytokine signaling 1 (SOCS1) limits NFκB signaling by decreasing p65 stability within the cell nucleus,” The FASEB Journal, vol. 25, no. 3, pp. 863–874, 2011. View at Publisher · View at Google Scholar · View at Scopus
  187. R. Nakagawa, T. Naka, H. Tsutsui et al., “SOCS-1 participates in negative regulation of LPS responses,” Immunity, vol. 17, no. 5, pp. 677–687, 2002. View at Publisher · View at Google Scholar · View at Scopus