Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2016 (2016), Article ID 6391264, 12 pages
http://dx.doi.org/10.1155/2016/6391264
Research Article

Phenotyping of Leukocytes and Leukocyte-Derived Extracellular Vesicles

Department of Clinical Immunology, Aalborg University Hospital, 9000 Aalborg, Denmark

Received 15 December 2015; Revised 4 March 2016; Accepted 20 March 2016

Academic Editor: Eyad Elkord

Copyright © 2016 Lotte Hatting Pugholm et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. S. Revenfeld, R. Bæk, M. H. Nielsen, A. Stensballe, K. Varming, and M. Jørgensen, “Diagnostic and prognostic potential of extracellular vesicles in peripheral blood,” Clinical Therapeutics, vol. 36, no. 6, pp. 830–846, 2014. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Yáñez-Mó, P. R.-M. Siljander, Z. Andreu et al., “Biological properties of extracellular vesicles and their physiological functions,” Journal of Extracellular Vesicles, vol. 4, Article ID 27066, 2015. View at Publisher · View at Google Scholar
  3. C. Théry, L. Zitvogel, and S. Amigorena, “Exosomes: composition, biogenesis and function,” Nature Reviews Immunology, vol. 2, no. 8, pp. 569–579, 2002. View at Google Scholar · View at Scopus
  4. S. J. Gould and G. Raposo, “As we wait: coping with an imperfect nomenclature for extracellular vesicles,” Journal of Extracellular Vesicles, vol. 2, Article ID 20389, 2013. View at Publisher · View at Google Scholar
  5. H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J. J. Lee, and J. O. Lötvall, “Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells,” Nature Cell Biology, vol. 9, no. 6, pp. 654–659, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Denzer, M. J. Kleijmeer, H. F. G. Heijnen, W. Stoorvogel, and H. J. Geuze, “Exosome: from internal vesicle of the multivesicular body to intercellular signaling device,” Journal of Cell Science, vol. 113, part 19, pp. 3365–3374, 2000. View at Google Scholar · View at Scopus
  7. C. Théry, M. Ostrowski, and E. Segura, “Membrane vesicles as conveyors of immune responses,” Nature Reviews Immunology, vol. 9, no. 8, pp. 581–593, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Huber, P. Filipazzi, M. Iero, S. Fais, and L. Rivoltini, “More insights into the immunosuppressive potential of tumor exosomes,” Journal of Translational Medicine, vol. 6, article 63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Iero, R. Valenti, V. Huber et al., “Tumour-released exosomes and their implications in cancer immunity,” Cell Death and Differentiation, vol. 15, no. 1, pp. 80–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. M. P. Oksvold, A. Kullmann, L. Forfang et al., “Expression of B-Cell surface antigens in subpopulations of exosomes released from B-cell lymphoma cells,” Clinical Therapeutics, vol. 36, no. 6, pp. 847.e1–862.e1, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. V. Muralidharan-Chari, J. W. Clancy, A. Sedgwick, and C. D'Souza-Schorey, “Microvesicles: mediators of extracellular communication during cancer progression,” Journal of Cell Science, vol. 123, no. 10, pp. 1603–1611, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Valenti, V. Huber, P. Filipazzi et al., “Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes,” Cancer Research, vol. 66, no. 18, pp. 9290–9298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. D. D. Taylor, C. Gerçel-Taylor, K. S. Lyons, J. Stanson, and T. L. Whiteside, “T-cell apoptosis and suppression of T-cell receptor/CD3-zeta by Fas ligand-containing membrane vesicles shed from ovarian tumors,” Clinical Cancer Research, vol. 9, no. 14, pp. 5113–5119, 2003. View at Google Scholar
  14. M. Mack, A. Kleinschmidt, H. Brühl et al., “Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection,” Nature Medicine, vol. 6, no. 7, pp. 769–775, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Wurdinger, N. N. Gatson, L. Balaj, B. Kaur, X. O. Breakefield, and D. M. Pegtel, “Extracellular vesicles and their convergence with viral pathways,” Advances in Virology, vol. 2012, Article ID 767694, 12 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Mittelbrunn, C. Gutiérrez-Vázquez, C. Villarroya-Beltri et al., “Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells,” Nature Communications, vol. 2, no. 1, article 282, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Admyre, S. M. Johansson, S. Paulie, and S. Gabrielsson, “Direct exosome stimulation of peripheral human T cells detected by ELISPOT,” European Journal of Immunology, vol. 36, no. 7, pp. 1772–1781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Eldh, K. Ekström, H. Valadi et al., “Exosomes communicate protective messages during oxidative stress; possible role of exosomal shuttle RNA,” PLoS ONE, vol. 5, no. 12, Article ID e15353, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. C. Saunderson, P. C. Schuberth, A. C. Dunn et al., “Induction of exosome release in primary B cells stimulated via CD40 and the IL-4 receptor,” The Journal of Immunology, vol. 180, no. 12, pp. 8146–8152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Lugini, S. Cecchetti, V. Huber et al., “Immune surveillance properties of human NK cell-derived exosomes,” Journal of Immunology, vol. 189, no. 6, pp. 2833–2842, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Xie, X. Zhang, T. Zhao, W. Li, and J. Xiang, “Natural CD8+25+ regulatory T cell-secreted exosomes capable of suppressing cytotoxic T lymphocyte-mediated immunity against B16 melanoma,” Biochemical and Biophysical Research Communications, vol. 438, no. 1, pp. 152–155, 2013. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bhatnagar, K. Shinagawa, F. J. Castellino, and J. S. Schorey, “Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo,” Blood, vol. 110, no. 9, pp. 3234–3244, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. N. M. Nolte-'t Hoen, S. I. Buschow, S. M. Anderton, W. Stoorvogel, and M. H. M. Wauben, “Activated T cells recruit exosomes secreted by dendritic cells via LFA-1,” Blood, vol. 113, no. 9, pp. 1977–1981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Garzetti, R. Menon, A. Finardi et al., “Activated macrophages release microvesicles containing polarized M1 or M2 mRNAs,” Journal of Leukocyte Biology, vol. 95, no. 5, pp. 817–825, 2014. View at Publisher · View at Google Scholar · View at Scopus
  25. L. Zitvogel, A. Regnault, A. Lozier et al., “Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes,” Nature Medicine, vol. 4, no. 5, pp. 594–600, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Rialland, D. Lankar, G. Raposo, C. Bonnerot, and P. Hubert, “BCR-bound antigen is targeted to exosomes in human follicular lymphoma B-cells,” Biology of the Cell, vol. 98, no. 8, pp. 491–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Muntasell, A. C. Berger, and P. A. Roche, “T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes,” EMBO Journal, vol. 26, no. 19, pp. 4263–4272, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Segura, S. Amigorena, and C. Théry, “Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses,” Blood Cells, Molecules, and Diseases, vol. 35, no. 2, pp. 89–93, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Viaud, M. Terme, C. Flament et al., “Dendritic cell-derived exosomes promote natural killer cell activation and proliferation: a role for NKG2D ligands and IL-15Rα,” PLoS ONE, vol. 4, no. 3, Article ID e4942, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. I. Buschow, E. N. M. Nolte-'t Hoen, G. van Niel et al., “MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways,” Traffic, vol. 10, no. 10, pp. 1528–1542, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Hao, J. Yuan, and J. Xiang, “Nonspecific CD4+ T cells with uptake of antigen-specific dendritic cell-released exosomes stimulate antigen-specific CD8+ CTL responses and long-term T cell memory,” Journal of Leukocyte Biology, vol. 82, no. 4, pp. 829–838, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Zhang, Y. Xie, W. Li, R. Chibbar, S. Xiong, and J. Xiang, “CD4 T cell-released exosomes inhibit CD8 cytotoxic T-lymphocyte responses and antitumor immunity,” Cellular and Molecular Immunology, vol. 8, no. 1, pp. 23–30, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. O. Ashiru, P. Boutet, L. Fernández-Messina et al., “Natural killer cell cytotoxicity is suppressed by exposure to the human NKG2D ligand MICA008 that is shed by tumor cells in exosomes,” Cancer Research, vol. 70, no. 2, pp. 481–489, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Li, J.-J. Li, J.-Y. Yang et al., “Tolerance induction by exosomes from immature dendritic cells and rapamycin in a mouse cardiac allograft model,” PLoS ONE, vol. 7, no. 8, Article ID e44045, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. X. Yang, S. Meng, H. Jiang, C. Zhu, and W. Wu, “Exosomes derived from immature bone marrow dendritic cells induce tolerogenicity of intestinal transplantation in rats,” Journal of Surgical Research, vol. 171, no. 2, pp. 826–832, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Pêche, M. Heslan, C. Usal, S. Amigorena, and M. C. Cuturi, “Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection,” Transplantation, vol. 76, no. 10, pp. 1503–1510, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Jørgensen, R. Bæk, S. Pedersen, E. K. Søndergaard, S. R. Kristensen, and K. Varming, “Extracellular Vesicle (EV) Array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping,” Journal of Extracellular Vesicles, vol. 2, pp. 1–9, 2013. View at Publisher · View at Google Scholar
  38. M. M. Jørgensen, R. Bæk, and K. Varming, “Potentials and capabilities of the Extracellular Vesicle (EV) Array,” Journal of Extracellular Vesicles, vol. 4, Article ID 26048, 2015. View at Publisher · View at Google Scholar
  39. M. Kornek, Y. Popov, T. A. Libermann, N. H. Afdhal, and D. Schuppan, “Human T cell microparticles circulate in blood of hepatitis patients and induce fibrolytic activation of hepatic stellate cells,” Hepatology, vol. 53, no. 1, pp. 230–242, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Admyre, B. Bohle, S. M. Johansson et al., “B cell-derived exosomes can present allergen peptides and activate allergen-specific T cells to proliferate and produce TH2-like cytokines,” Journal of Allergy and Clinical Immunology, vol. 120, no. 6, pp. 1418–1424, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Aharon, T. Tamari, and B. Brenner, “Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells,” Thrombosis and Haemostasis, vol. 100, no. 5, pp. 878–885, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. E. van der Vlist, G. J. A. Arkesteijn, C. H. A. van de Lest, W. Stoorvogel, E. N. M. Nolte-'t Hoen, and M. H. M. Wauben, “CD4+ T cell activation promotes the differential release of distinct populations of nanosized vesicles,” Journal of Extracellular Vesicles, vol. 1, Article ID 18364, 2012. View at Publisher · View at Google Scholar
  43. M. P. Hunter, N. Ismail, X. Zhang et al., “Detection of microRNA expression in human peripheral blood microvesicles,” PLoS ONE, vol. 3, no. 11, Article ID e3694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Clémenceau, R. Vivien, E. Debeaupuis et al., “FcγRIIIa (CD16) induction on human t lymphocytes and CD16pos T-lymphocyte amplification,” Journal of Immunotherapy, vol. 34, no. 7, pp. 542–549, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. N. K. Björkström, V. D. Gonzalez, K.-J. Malmberg et al., “Elevated numbers of Fc gamma RIIIA+ (CD16+) effector CD8 T cells with NK cell-like function in chronic hepatitis C virus infection,” The Journal of Immunology, vol. 181, no. 6, pp. 4219–4228, 2008. View at Google Scholar
  46. D. M. Rose, R. Alon, and M. H. Ginsberg, “Integrin modulation and signaling in leukocyte adhesion and migration,” Immunological Reviews, vol. 218, no. 1, pp. 126–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. H. Yusuf-Makagiansar, M. E. Anderson, T. V. Yakovleva, J. S. Murray, and T. J. Siahaan, “Inhibition of LFA-1/ICAM-1 and VLA-4/VCAM-1 as a therapeutic approach to inflammation and autoimmune diseases,” Medicinal Research Reviews, vol. 22, no. 2, pp. 146–167, 2002. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Clayton, A. Turkes, S. Dewitt, R. Steadman, M. D. Mason, and M. B. Hallett, “Adhesion and signaling by B cell-derived exosomes: the role of integrins,” The FASEB Journal, vol. 18, no. 9, pp. 977–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. R. Wubbolts, R. S. Leckie, P. T. M. Veenhuizen et al., “Proteomic and biochemical analyses of human B cell-derived exosomes: potential implications for their function and multivesicular body formation,” The Journal of Biological Chemistry, vol. 278, no. 13, pp. 10963–10972, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. H. Peinado, M. Alečković, S. Lavotshkin et al., “Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET,” Nature Medicine, vol. 18, no. 6, pp. 883–891, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Uhlen, P. Oksvold, L. Fagerberg et al., “Towards a knowledge-based Human Protein Atlas,” Nature Biotechnology, vol. 28, no. 12, pp. 1248–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. M. J. Martínez-Lorenzo, A. Anel, S. Gamen et al., “Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles,” Journal of Immunology, vol. 163, no. 3, pp. 1274–1281, 1999. View at Google Scholar · View at Scopus
  53. I. Monleón, M. J. Martínez-Lorenzo, L. Monteagudo et al., “Differential secretion of Fas ligand- or APO2 ligand/TNF-related apoptosis-inducing ligand-carrying microvesicles during activation-induced death of human T cells,” Journal of Immunology, vol. 167, no. 12, pp. 6736–6744, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. R. Alonso, C. Mazzeo, M. C. Rodriguez et al., “Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes,” Cell Death and Differentiation, vol. 18, no. 7, pp. 1161–1173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. S. Tsukamoto, M. Takeuchi, T. Kawaguchi et al., “Tetraspanin CD9 modulates ADAM17-mediated shedding of LR11 in leukocytes,” Experimental and Molecular Medicine, vol. 46, article e89, 2014. View at Publisher · View at Google Scholar · View at Scopus
  56. J. M. Tarrant, L. Robb, A. B. van Spriel, and M. D. Wright, “Tetraspanins: molecular organisers of the leukocyte surface,” Trends in Immunology, vol. 24, no. 11, pp. 610–617, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Rocha-Perugini, M. Zamai, J. M. González-Granado et al., “CD81 controls sustained T cell activation signaling and defines the maturation stages of cognate immunological synapses,” Molecular and Cellular Biology, vol. 33, no. 18, pp. 3644–3658, 2013. View at Publisher · View at Google Scholar · View at Scopus
  58. S. C. Todd, S. G. Lipps, L. Crisa, D. R. Salomon, and C. D. Tsoukas, “CD81 expressed on human thymocytes mediates integrin activation and interleukin 2-dependent proliferation,” The Journal of Experimental Medicine, vol. 184, no. 5, pp. 2055–2060, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. H. T. Maecker, M.-S. Do, and S. Levy, “CD81 on B cells promotes interleukin 4 secretion and antibody production during T helper type 2 immune responses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 5, pp. 2458–2462, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Gilsanz, L. Sánchez-Martín, M. D. Gutiérrez-López et al., “ALCAM/CD166 adhesive function is regulated by the tetraspanin CD9,” Cellular and Molecular Life Sciences, vol. 70, no. 3, pp. 475–493, 2013. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Tippett, P. U. Cameron, M. Marsh, and S. M. Crowe, “Characterization of tetraspanins CD9, CD53, CD63, and CD81 in monocytes and macrophages in HIV-1 infection,” Journal of Leukocyte Biology, vol. 93, no. 6, pp. 913–920, 2013. View at Publisher · View at Google Scholar · View at Scopus
  62. A. L. Schacht Revenfeld, E. K. Lindersson Søndergaard, A. Stensballe, R. Baek, M. Møller Jørgensen, and K. Varming, “Characterization of a cell-culturing system for the study of contact-independent extracellular vesicle communication,” Journal of Circulating Biomarkers, 2016. View at Publisher · View at Google Scholar
  63. M. He, J. Crow, M. Roth, Y. Zeng, and A. K. Godwin, “Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology,” Lab on a Chip—Miniaturisation for Chemistry and Biology, vol. 14, no. 19, pp. 3773–3780, 2014. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Kowal, G. Arras, M. Colombo et al., “Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes,” Proceedings of the National Academy of Sciences, vol. 113, no. 8, pp. E968–E977, 2016. View at Publisher · View at Google Scholar