Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017 (2017), Article ID 3062892, 6 pages
https://doi.org/10.1155/2017/3062892
Research Article

In Vitro Immunomodulatory Activity of a Transition-State Analog Inhibitor of Human Purine Nucleoside Phosphorylase in Cutaneous Leishmaniasis

1Serviço de Imunologia do Complexo Hospitalar Universitário Professor Edgard Santos (Com-HUPES), Universidade Federal da Bahia, Salvador, BA, Brazil
2Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
3Fundação Oswaldo Cruz (FIOCRUZ), Instituto Gonçalo Moniz (CPqGM), Salvador, BA, Brazil

Correspondence should be addressed to Edgar Marcelino de Carvalho; rb.abfu@onumi

Received 14 May 2017; Accepted 31 July 2017; Published 27 August 2017

Academic Editor: Nejat K. Egilmez

Copyright © 2017 Natália Barbosa Carvalho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. WHO, “Leishmaniasis: worldwide epidemiological and drug access update,” World Health Organization, Geneva, Switzerland, 2014, http://www.who.int/leishmaniasis/burden/Country_profiles/en/. View at Google Scholar
  2. J. C. Miranda, E. Reis, A. Schriefer et al., “Frequency of infection of Lutzomyia phlebotomines with Leishmania braziliensis in a Brazilian endemic area as assessed by pinpoint capture and polymerase chain reaction,” Memórias do Instituto Oswaldo Cruz, vol. 97, no. 2, pp. 185–188, 2002. View at Google Scholar
  3. A. L. Bittencourt and A. Barral, “Evaluation of the histopathological classifications of American cutaneous and mucocutaneous leishmaniasis,” Memórias do Instituto Oswaldo Cruz, vol. 86, no. 1, pp. 51–56, 1991. View at Google Scholar
  4. L. Soong, C. H. Chang, J. Sun et al., “Role of CD4+ T cells in pathogenesis associated with Leishmania amazonensis infection,” Journal of Immunology, vol. 158, no. 11, pp. 5374–5383, 1997. View at Google Scholar
  5. O. Bacellar, H. Lessa, A. Schriefer et al., “Up-regulation of Th1-type responses in mucosal leishmaniasis patients,” Infection and Immunity, vol. 70, no. 12, pp. 6734–6740, 2002. View at Google Scholar
  6. L. Xin, Y. Li, and L. Soong, “Role of interleukin-1beta in activating the CD11c(high) CD45RB dendritic cell subset and priming Leishmania amazonensis-specific CD4+ T cells in vitro and in vivo,” Infection and Immunity, vol. 75, no. 10, pp. 5018–5026, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Santos Cda, V. Boaventura, C. Ribeiro Cardoso et al., “CD8+ granzyme B+-mediated tissue injury vs. CD4+IFNgamma+-mediated parasite killing in human cutaneous leishmaniasis,” The Journal of Investigative Dermatology, vol. 133, no. 6, pp. 1533–1540, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. L. R. Antonelli, W. O. Dutra, R. P. Almeida, O. Bacellar, E. M. Carvalho, and K. J. Gollob, “Activated inflammatory T cells correlate with lesion size in human cutaneous leishmaniasis,” Immunology Letters, vol. 101, no. 2, pp. 226–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. D. R. Faria, K. J. Gollob, J. Barbosa Jr. et al., “Decreased in situ expression of interleukin-10 receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in mucosal leishmaniasis,” Infection and Immunity, vol. 73, no. 12, pp. 7853–7859, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. L. P. Carvalho, S. Passos, A. Schriefer, and E. M. Carvalho, “Protective and pathologic immune responses in human tegumentary leishmaniasis,” Frontiers in Immunology, vol. 3, p. 301, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Scott and F. O. Novais, “Cutaneous leishmaniasis: immune responses in protection and pathogenesis,” Nature Reviews Immunology, vol. 16, no. 9, pp. 581–592, 2016. View at Publisher · View at Google Scholar · View at Scopus
  12. C. I. Brodskyn, A. Barral, V. Boaventura, E. Carvalho, and M. Barral-Netto, “Parasite-driven in vitro human lymphocyte cytotoxicity against autologous infected macrophages from mucosal leishmaniasis,” Journal of Immunology, vol. 159, no. 9, pp. 4467–4473, 1997. View at Google Scholar
  13. T. M. Cardoso, A. Machado, D. L. Costa et al., “Protective and pathological functions of CD8+ T cells in Leishmania braziliensis infection,” Infection and Immunity, vol. 83, no. 3, pp. 898–906, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. S. E. O'Neal, L. H. Guimaraes, P. R. Machado et al., “Influence of helminth infections on the clinical course of and immune response to Leishmania braziliensis cutaneous leishmaniasis,” The Journal of Infectious Diseases, vol. 195, no. 1, pp. 142–148, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Llanos-Cuentas, G. Tulliano, R. Araujo-Castillo et al., “Clinical and parasite species risk factors for pentavalent antimonial treatment failure in cutaneous leishmaniasis in Peru,” Clinical Infectious Diseases, vol. 46, no. 2, pp. 223–231, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. R. Machado, H. Lessa, M. Lessa et al., “Oral pentoxifylline combined with pentavalent antimony: a randomized trial for mucosal leishmaniasis,” Clinical Infectious Diseases, vol. 44, no. 6, pp. 788–793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. J. B. Santos, A. R. de Jesus, P. R. Machado et al., “Antimony plus recombinant human granulocyte-macrophage colony-stimulating factor applied topically in low doses enhances healing of cutaneous leishmaniasis ulcers: a randomized, double-blind, placebo-controlled study,” The Journal of Infectious Diseases, vol. 190, no. 10, pp. 1793–1796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. R. P. Almeida, J. Brito, P. L. Machado et al., “Successful treatment of refractory cutaneous leishmaniasis with GM-CSF and antimonials,” The American Journal of Tropical Medicine and Hygiene, vol. 73, no. 1, pp. 79–81, 2005. View at Google Scholar
  19. G. Sadeghian and M. A. Nilforoushzadeh, “Effect of combination therapy with systemic glucantime and pentoxifylline in the treatment of cutaneous leishmaniasis,” International Journal of Dermatology, vol. 45, no. 7, pp. 819–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. H. A. Lessa, P. Machado, F. Lima et al., “Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony,” The American Journal of Tropical Medicine and Hygiene, vol. 65, no. 2, pp. 87–89, 2001. View at Google Scholar
  21. A. Bzowska, E. Kulikowska, and D. Shugar, “Purine nucleoside phosphorylases: properties, functions, and clinical aspects,” Pharmacology & Therapeutics, vol. 88, no. 3, pp. 349–425, 2000. View at Google Scholar
  22. M. C. de Moraes, R. G. Ducati, A. J. Donato et al., “Capillary bioreactors based on human purine nucleoside phosphorylase: a new approach for ligands identification and characterization,” Journal of Chromatography. A, vol. 1232, pp. 110–115, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. J. L. Weirather, S. M. Jeronimo, S. Gautam et al., “Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp. in human samples,” Journal of Clinical Microbiology, vol. 49, no. 11, pp. 3892–3904, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Semeraro, A. Lossani, M. Botta et al., “Simplified analogues of immucillin-G retain potent human purine nucleoside phosphorylase inhibitory activity,” Journal of Medicinal Chemistry, vol. 49, no. 20, pp. 6037–6045, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Soares, L. Govender, J. Hughes et al., “Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation,” Journal of Immunological Methods, vol. 362, no. 1-2, pp. 43–50, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. E. A. Llanos Cuentas, C. C. Cuba, A. C. Barreto, and P. D. Marsden, “Clinical characteristics of human Leishmania braziliensis braziliensis infections,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 78, no. 6, pp. 845-846, 1984. View at Google Scholar
  27. T. Newlove, L. H. Guimaraes, D. J. Morgan et al., “Antihelminthic therapy and antimony in cutaneous leishmaniasis: a randomized, double-blind, placebo-controlled trial in patients co-infected with helminths and Leishmania braziliensis,” The American Journal of Tropical Medicine and Hygiene, vol. 84, no. 4, pp. 551–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Brito, M. Dourado, L. Polari et al., “Clinical and immunological outcome in cutaneous leishmaniasis patients treated with pentoxifylline,” The American Journal of Tropical Medicine and Hygiene, vol. 90, no. 4, pp. 617–620, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Giudice, C. Vendrame, C. Bezerra et al., “Macrophages participate in host protection and the disease pathology associated with Leishmania braziliensis infection,” BMC Infectious Diseases, vol. 12, p. 75, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. D. R. Faria, P. E. Souza, F. V. Duraes et al., “Recruitment of CD8+ T cells expressing granzyme A is associated with lesion progression in human cutaneous leishmaniasis,” Parasite Immunology, vol. 31, no. 8, pp. 432–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. L. Bottrel, W. O. Dutra, F. A. Martins et al., “Flow cytometric determination of cellular sources and frequencies of key cytokine-producing lymphocytes directed against recombinant LACK and soluble leishmania antigen in human cutaneous leishmaniasis,” Infection and Immunity, vol. 69, no. 5, pp. 3232–3239, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. N. H. Hunt, J. Golenser, T. Chan-Ling et al., “Immunopathogenesis of cerebral malaria,” International Journal for Parasitology, vol. 36, no. 5, pp. 569–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. L. Higuchi Mde, L. A. Benvenuti, M. Martins Reis, and M. Metzger, “Pathophysiology of the heart in Chagas’ disease: current status and new developments,” Cardiovascular Research, vol. 60, no. 1, pp. 96–107, 2003. View at Google Scholar
  34. J. A. Marin-Neto, E. Cunha-Neto, B. C. Maciel, and M. V. Simoes, “Pathogenesis of chronic Chagas heart disease,” Circulation, vol. 115, no. 9, pp. 1109–1123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Cunha-Neto, P. C. Teixeira, L. G. Nogueira, and J. Kalil, “Autoimmunity,” Advances in Parasitology, vol. 76, pp. 129–152, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. M. L. Dantas, J. C. Oliveira, L. Carvalho et al., “CD8+ T cells in situ in different clinical forms of human cutaneous leishmaniasis,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 46, no. 6, pp. 728–734, 2013. View at Publisher · View at Google Scholar · View at Scopus
  37. F. O. Novais, A. M. Carvalho, M. L. Clark et al., “CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production,” PLoS Pathogens, vol. 13, no. 2, article e1006196, 2017. View at Publisher · View at Google Scholar
  38. F. O. Novais, L. P. Carvalho, J. W. Graff et al., “Cytotoxic T cells mediate pathology and metastasis in cutaneous leishmaniasis,” PLoS Pathogens, vol. 9, no. 7, article e1003504, 2013. View at Publisher · View at Google Scholar · View at Scopus