Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2017, Article ID 9253208, 6 pages
https://doi.org/10.1155/2017/9253208
Research Article

Dietary Supplementation of Astragalus Polysaccharides Enhanced Immune Components and Growth Factors EGF and IGF-1 in Sow Colostrum

1College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
2College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China

Correspondence should be addressed to Daojun Xu; moc.361@92nujoadux and Qing Yang; nc.ude.uanuh@nhgnaygniq

Received 2 August 2016; Accepted 13 December 2016; Published 9 January 2017

Academic Editor: Menaka C. Thounaojam

Copyright © 2017 Lunbo Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Le Dividich, J. A. Rooke, and P. Herpin, “Nutritional and immunological importance of colostrum for the new-born pig,” Journal of Agricultural Science, vol. 143, no. 6, pp. 469–485, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. J. A. Rooke and I. M. Bland, “The acquisition of passive immunity in the new-born piglet,” Livestock Production Science, vol. 78, no. 1, pp. 13–23, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Devillers, C. Farmer, A.-M. Mounier, J. Le Dividich, and A. Prunier, “Hormones, IgG and lactose changes around parturition in plasma, and colostrum or saliva of multiparous sows,” Reproduction Nutrition Development, vol. 44, no. 4, pp. 381–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Klobasa, E. Werhahn, and J. E. Butler, “Composition of sow milk during lactation,” Journal of animal science, vol. 64, no. 5, pp. 1458–1466, 1987. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Xu, F. Wang, and S. H. Zhang, “Postnatal adaptation of the gastrointestinal tract in neonatal pigs: a possible role of milk-borne growth factors,” Livestock Production Science, vol. 66, no. 2, pp. 95–107, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. R. Westrom, B. G. Ohlsson, J. Svendsen, C. Tagesson, and B. W. Karlsson, “Intestinal transmission of macromolecules (BSA and FITC-Dextran) in the neonatal pig: enhancing effect of colostrum, proteins and proteinase inhibitors,” Biology of the Neonate, vol. 47, no. 6, pp. 359–366, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Decaluwé, D. Maes, B. Wuyts, A. Cools, S. Piepers, and G. P. J. Janssens, “Piglets' colostrum intake associates with daily weight gain and survival until weaning,” Livestock Science, vol. 162, no. 1, pp. 185–192, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Quesnel, C. Farmer, and N. Devillers, “Colostrum intake: influence on piglet performance and factors of variation,” Livestock Science, vol. 146, no. 2-3, pp. 105–114, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Kallon, X. Li, J. Ji et al., “Astragalus polysaccharide enhances immunity and inhibits H9N2 avian influenza virus in vitro and in vivo,” Journal of Animal Science and Biotechnology, vol. 4, no. 1, article no. 22, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Li, Y. Zhong, H. Li et al., “Enhancement of Astragalus polysaccharide on the immune responses in pigs inoculated with foot-and-mouth disease virus vaccine,” International Journal of Biological Macromolecules, vol. 49, no. 3, pp. 362–368, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. Q. Liu, Y. Yao, S. Zhang, and Z. Sheng, “Astragalus polysaccharides regulate T cell-mediated immunity via CD11chighCD45RBlow DCs in vitro,” Journal of Ethnopharmacology, vol. 136, no. 3, pp. 457–464, 2011. View at Publisher · View at Google Scholar
  12. P. Shao, L.-H. Zhao, Zhi-Chen, and J.-P. Pan, “Regulation on maturation and function of dendritic cells by Astragalus mongholicus polysaccharides,” International Immunopharmacology, vol. 6, no. 7, pp. 1161–1166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Zhang, J. Li, Y. Hu et al., “Effects of astragalus polysaccharide on the immune response to foot-and-mouth disease vaccine in mice,” Carbohydrate Polymers, vol. 82, no. 3, pp. 680–686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Chen, D. Wang, Y. Hu et al., “Astragalus polysaccharide and oxymatrine can synergistically improve the immune efficacy of Newcastle disease vaccine in chicken,” International Journal of Biological Macromolecules, vol. 46, no. 4, pp. 425–428, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Jaeger, C. H. Lamar, G. D. Bottoms, and T. R. Cline, “Growth-stimulating substances in porcine milk,” American Journal of Veterinary Research, vol. 48, no. 10, pp. 1531–1533, 1987. View at Google Scholar · View at Scopus
  16. S. L. Yuan, X. S. Piao, D. F. Li, S. W. Kim, H. S. Lee, and P. F. Quo, “Effects of dietary Astragalus polysaccharide on growth performance and immune function in weaned pigs,” Animal Science, vol. 82, no. 4, pp. 501–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Ogawa, T. Tsukahara, T. Tsuruta et al., “The evaluation of secretion volume and immunoglobulin A and G concentrations in sow colostrum from anterior to posterior teats,” Animal Science Journal, vol. 85, no. 6, pp. 678–682, 2014. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Wang, Y. Shao, Y. Guo, and J. Yuan, “Enhancement of peripheral blood CD8+ T cells and classical swine fever antibodies by dietary β-1,3/1,6-glucan supplementation in weaned piglets,” Transboundary and Emerging Diseases, vol. 55, no. 9-10, pp. 369–376, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Li, R. P. She, L. J. Han, and K. Z. Wang, “Effect of Astragalus root extractions on chicken growth and immunological function,” Chinese Journal of Veterinary Science & Technology, vol. 34, no. 5, pp. 61–64, 2004. View at Google Scholar
  20. K. Kajimura, Y. Takagi, K. Miyano et al., “Polysaccharide of Astragali radix enhances IgM antibody production in aged mice,” Biological & Pharmaceutical Bulletin, vol. 20, no. 11, pp. 1178–1182, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Guo, J. Liu, Y. Hu et al., “Astragalus polysaccharide and sulfated epimedium polysaccharide synergistically resist the immunosuppression,” Carbohydrate Polymers, vol. 90, no. 2, pp. 1055–1060, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. P. L. Eblé, S. Quak, Y. Geurts, H. W. M. Moonen-Leusen, and W. L. A. Loeffen, “Efficacy of CSF vaccine CP7_E2alf in piglets with maternally derived antibodies,” Veterinary Microbiology, vol. 174, no. 1-2, pp. 27–38, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Suradhat, S. Damrongwatanapokin, and R. Thanawongnuwech, “Factors critical for successful vaccination against classical swine fever in endemic areas,” Veterinary Microbiology, vol. 119, no. 1, pp. 1–9, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. Z.-Y. Zhuge, Y.-H. Zhu, P.-Q. Liu et al., “Effects of astragalus polysaccharide on immune responses of porcine PBMC stimulated with PRRSV or CSFV,” PLOS ONE, vol. 7, no. 1, Article ID e29320, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. X. Kong, Y. Hu, R. Rui, D. Wang, and X. Li, “Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken,” International Immunopharmacology, vol. 4, no. 7, pp. 975–982, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. B.-M. Shao, W. Xu, H. Dai, P. Tu, Z. Li, and X.-M. Gao, “A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb,” Biochemical and Biophysical Research Communications, vol. 320, no. 4, pp. 1103–1111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. C. J. Jenvey, M. P. Reichel, and P. D. Cockcroft, “Erysipelothrix rhusiopathiae and Mycoplasma hyopneumoniae: the sensitivities of enzyme-linked immunosorbent assays for detecting vaccinated sows of unknown disease status using serum and colostrum, and the correlation of the results for sow serum, colostrum, and piglet serum,” Journal of Veterinary Diagnostic Investigation, vol. 27, no. 2, pp. 211–216, 2015. View at Publisher · View at Google Scholar · View at Scopus
  28. R. J. Playford, C. E. Macdonald, and W. S. Johnson, “Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders,” American Journal of Clinical Nutrition, vol. 72, no. 1, pp. 5–14, 2000. View at Google Scholar · View at Scopus
  29. A. C. F. Støy, P. M. H. Heegaard, T. Thymann et al., “Bovine colostrum improves intestinal function following formula-induced gut inflammation in preterm pigs,” Clinical Nutrition, vol. 33, no. 2, pp. 322–329, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Bedford, T. Chen, E. Huynh et al., “Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: potential mechanisms involved,” Journal of Biotechnology, vol. 196-197, pp. 9–19, 2015. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Jung, B.-K. Kang, J.-Y. Kim, K.-S. Shin, C.-S. Lee, and D.-S. Song, “Effects of epidermal growth factor on atrophic enteritis in piglets induced by experimental porcine epidemic diarrhoea virus,” Veterinary Journal, vol. 177, no. 2, pp. 231–235, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. T. Zijlstra, J. Odle, W. F. Hall, B. W. Petschow, H. B. Gelberg, and R. E. Litov, “Effect of orally administered epidermal growth factor on intestinal recovery of neonatal pigs infected with rotavirus,” Journal of Pediatric Gastroenterology & Nutrition, vol. 19, no. 4, pp. 382–390, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Schams and R. Einspanier, “Growth hormone, IGF-I and insulin in mammary gland secretion before and after parturition and possibility of their transfer into the calf,” Endocrine Regulations, vol. 25, no. 1-2, pp. 139–143, 1991. View at Google Scholar · View at Scopus
  34. D. G. Burrin, T. J. Wester, T. A. Davis, S. Amick, and J. P. Heath, “Orally administered IGF-I increases intestinal mucosal growth in formula-fed neonatal pigs,” American Journal of Physiology, vol. 270, no. 5, pp. 1085–1091, 1996. View at Google Scholar · View at Scopus
  35. V. M. Houle, E. A. Schroeder, J. Odle, and S. M. Donovan, “Small intestinal disaccharidase activity and ileal villus height are increased in piglets consuming formula containing recombinant human insulin- like growth factor-I,” Pediatric Research, vol. 42, no. 1, pp. 78–86, 1997. View at Publisher · View at Google Scholar · View at Scopus