Table of Contents Author Guidelines Submit a Manuscript
Journal of Immunology Research
Volume 2018 (2018), Article ID 9324357, 11 pages
https://doi.org/10.1155/2018/9324357
Review Article

The Role of Flavonoids in Inhibiting Th17 Responses in Inflammatory Arthritis

1Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 40500 Larissa, Greece
2Division of Liver Transplantation and Mucosal Biology, King’s College London School of Medicine, Denmark Hill Campus, London SE5 9RS, UK

Correspondence should be addressed to Dimitrios P. Bogdanos; rg.htu.dem@sonadgob

Received 23 October 2017; Accepted 3 January 2018; Published 5 March 2018

Academic Editor: Lifei Hou

Copyright © 2018 Dimitra Kelepouri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. I. Sakkas, P. F. Chen, and C. D. Platsoucas, “T-cell antigen receptors in rheumatoid arthritis,” Immunologic Research, vol. 13, no. 2-3, pp. 117–138, 1994. View at Publisher · View at Google Scholar · View at Scopus
  2. L. I. Sakkas, N. A. Johanson, C. R. Scanzello, and C. D. Platsoucas, “Interleukin-12 is expressed by infiltrating macrophages and synovial lining cells in rheumatoid arthritis and osteoarthritis,” Cellular Immunology, vol. 188, no. 2, pp. 105–110, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. L. I. Sakkas, D. P. Bogdanos, C. Katsiari, and C. D. Platsoucas, “Anti-citrullinated peptides as autoantigens in rheumatoid arthritis—relevance to treatment,” Autoimmunity Reviews, vol. 13, no. 11, pp. 1114–1120, 2014. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Alexiou, A. Germenis, A. Koutroumpas, A. Kontogianni, K. Theodoridou, and L. I. Sakkas, “Anti-cyclic citrullinated peptide-2 (CCP2) autoantibodies and extra-articular manifestations in Greek patients with rheumatoid arthritis,” Clinical Rheumatology, vol. 27, no. 4, pp. 511–513, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. I. Alexiou, A. Germenis, A. Ziogas, K. Theodoridou, and L. I. Sakkas, “Diagnostic value of anti-cyclic citrullinated peptide antibodies in Greek patients with rheumatoid arthritis,” BMC Musculoskeletal Disorders, vol. 8, no. 1, p. 37, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Fournier, “Where do T cells stand in rheumatoid arthritis?” Joint, Bone, Spine, vol. 72, no. 6, pp. 527–532, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Schinnerling, J. C. Aguillon, D. Catalan, and L. Soto, “The role of interleukin-6 signalling and its therapeutic blockage in skewing the T cell balance in rheumatoid arthritis,” Clinical & Experimental Immunology, vol. 189, no. 1, pp. 12–20, 2017. View at Publisher · View at Google Scholar · View at Scopus
  8. O. Aravena, B. Pesce, L. Soto et al., “Anti-TNF therapy in patients with rheumatoid arthritis decreases Th1 and Th17 cell populations and expands IFN-γ-producing NK cell and regulatory T cell subsets,” Immunobiology, vol. 216, no. 12, pp. 1256–1263, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Azizi, F. Jadidi-Niaragh, and A. Mirshafiey, “Th17 cells in immunopathogenesis and treatment of rheumatoid arthritis,” International Journal of Rheumatic Diseases, vol. 16, no. 3, pp. 243–253, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Miao, K. Zhang, M. Lv et al., “Circulating Th17 and Th1 cells expressing CD161 are associated with disease activity in rheumatoid arthritis,” Scandinavian Journal of Rheumatology, vol. 43, no. 3, pp. 194–201, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Hashimoto, “Th17 in animal models of rheumatoid arthritis,” Journal of Clinical Medicine, vol. 6, no. 7, 2017. View at Publisher · View at Google Scholar
  12. D. S. E. Zaky and E. M. A. El-Nahrery, “Role of interleukin-23 as a biomarker in rheumatoid arthritis patients and its correlation with disease activity,” International Immunopharmacology, vol. 31, pp. 105–108, 2016. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Kugyelka, Z. Kohl, K. Olasz et al., “Enigma of IL-17 and Th17 cells in rheumatoid arthritis and in autoimmune animal models of arthritis,” Mediators of Inflammation, vol. 2016, Article ID 6145810, 11 pages, 2016. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Kuwabara, F. Ishikawa, M. Kondo, and T. Kakiuchi, “The role of IL-17 and related cytokines in inflammatory autoimmune diseases,” Mediators of Inflammation, vol. 2017, Article ID 3908061, 11 pages, 2017. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Jacobs, H. J. Wu, C. Benoist, and D. Mathis, “IL-17-producing T cells can augment autoantibody-induced arthritis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21789–21794, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. M. Roeleveld and M. I. Koenders, “The role of the Th17 cytokines IL-17 and IL-22 in rheumatoid arthritis pathogenesis and developments in cytokine immunotherapy,” Cytokine, vol. 74, no. 1, pp. 101–107, 2015. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Annunziato, L. Cosmi, V. Santarlasci et al., “Phenotypic and functional features of human Th17 cells,” Journal of Experimental Medicine, vol. 204, no. 8, pp. 1849–1861, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Cosmi, R. Cimaz, L. Maggi et al., “Evidence of the transient nature of the Th17 phenotype of CD4+CD161+ T cells in the synovial fluid of patients with juvenile idiopathic arthritis,” Arthritis & Rheumatism, vol. 63, no. 8, pp. 2504–2515, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Kotake, T. Yago, T. Kobashigawa, and Y. Nanke, “The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis,” Journal of Clinical Medicine, vol. 6, no. 7, 2017. View at Publisher · View at Google Scholar
  20. K. Nistala and L. R. Wedderburn, “Th17 and regulatory T cells: rebalancing pro- and anti-inflammatory forces in autoimmune arthritis,” Rheumatology, vol. 48, no. 6, pp. 602–606, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Morita, Y. Shima, J. B. Wing, S. Sakaguchi, A. Ogata, and A. Kumanogoh, “The proportion of regulatory T cells in patients with rheumatoid arthritis: a meta-analysis,” PLoS One, vol. 11, no. 9, article e0162306, 2016. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Fessler, A. Felber, C. Duftner, and C. Dejaco, “Therapeutic potential of regulatory T cells in autoimmune disorders,” BioDrugs, vol. 27, no. 4, pp. 281–291, 2013. View at Publisher · View at Google Scholar · View at Scopus
  23. D. L. Asquith, A. M. Miller, I. B. McInnes, and F. Y. Liew, “Animal models of rheumatoid arthritis,” European Journal of Immunology, vol. 39, no. 8, pp. 2040–2044, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. K. K. Keller, L. M. Lindgaard, L. Wogensen et al., “SKG arthritis as a model for evaluating therapies in rheumatoid arthritis with special focus on bone changes,” Rheumatology International, vol. 33, no. 5, pp. 1127–1133, 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Hashimoto, K. Hirota, H. Yoshitomi et al., “Complement drives Th17 cell differentiation and triggers autoimmune arthritis,” Journal of Experimental Medicine, vol. 207, no. 6, pp. 1135–1143, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Keffer, L. Probert, H. Cazlaris et al., “Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis,” The EMBO Journal, vol. 10, no. 13, pp. 4025–4031, 1991. View at Google Scholar
  27. J. J. Inglis, G. Criado, M. Medghalchi et al., “Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen,” Arthritis Research & Therapy, vol. 9, no. 5, p. R113, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. J. J. Inglis, E. Simelyte, F. E. McCann, G. Criado, and R. O. Williams, “Protocol for the induction of arthritis in C57BL/6 mice,” Nature Protocols, vol. 3, no. 4, pp. 612–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Lubberts, M. I. Koenders, B. Oppers-Walgreen et al., “Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion,” Arthritis & Rheumatism, vol. 50, no. 2, pp. 650–659, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. Ito, T. Usui, S. Kobayashi et al., “Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis,” Arthritis & Rheumatism, vol. 60, no. 8, pp. 2294–2303, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. R. C. Keith, J. L. Powers, E. F. Redente et al., “A novel model of rheumatoid arthritis-associated interstitial lung disease in SKG mice,” Experimental Lung Research, vol. 38, no. 2, pp. 55–66, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Jeong, E. K. Bae, H. Kim et al., “Estrogen attenuates the spondyloarthritis manifestations of the SKG arthritis model,” Arthritis Research & Therapy, vol. 19, no. 1, p. 198, 2017. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Rothe, N. Raulien, G. Kohler, M. Pierer, D. Quandt, and U. Wagner, “Autoimmune arthritis induces paired immunoglobulin-like receptor B expression on CD4+ T cells from SKG mice,” European Journal of Immunology, vol. 47, no. 9, pp. 1457–1467, 2017. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Benham, L. M. Rehaume, S. Z. Hasnain et al., “Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice,” Arthritis & Rhematology, vol. 66, no. 7, pp. 1755–1767, 2014. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Hirota, M. Hashimoto, H. Yoshitomi et al., “T cell self-reactivity forms a cytokine milieu for spontaneous development of IL-17+ Th cells that cause autoimmune arthritis,” Journal of Experimental Medicine, vol. 204, no. 1, pp. 41–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Monach, K. Hattori, H. Huang et al., “The K/BxN mouse model of inflammatory arthritis,” Methods in Molecular Medicine, vol. 136, pp. 269–282, 2007. View at Publisher · View at Google Scholar
  37. W. S. Cho, E. Jang, H. Y. Kim, and J. Youn, “Interleukin 17-expressing innate synovial cells drive K/Bxn serum-induced arthritis,” Immune Network, vol. 16, no. 6, pp. 366–372, 2016. View at Publisher · View at Google Scholar · View at Scopus
  38. A. D. Christensen, C. Haase, A. D. Cook, and J. A. Hamilton, “K/BxN serum-transfer arthritis as a model for human inflammatory arthritis,” Frontiers in Immunology, vol. 7, p. 213, 2016. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Li and E. M. Schwarz, “The TNF-α transgenic mouse model of inflammatory arthritis,” Springer Seminars in Immunopathology, vol. 25, no. 1, pp. 19–33, 2003. View at Publisher · View at Google Scholar · View at Scopus
  40. D. M. Butler, A. M. Malfait, L. J. Mason et al., “DBA/1 mice expressing the human TNF-alpha transgene develop a severe, erosive arthritis: characterization of the cytokine cascade and cellular composition,” The Journal of Immunology, vol. 159, pp. 2867–2876, 1997. View at Google Scholar
  41. M. Pasparakis, L. Alexopoulou, V. Episkopou, and G. Kollias, “Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response,” Journal of Experimental Medicine, vol. 184, no. 4, pp. 1397–1411, 1996. View at Publisher · View at Google Scholar · View at Scopus
  42. L. G. Pinto, T. M. Cunha, S. M. Vieira et al., “IL-17 mediates articular hypernociception in antigen-induced arthritis in mice,” Pain, vol. 148, no. 2, pp. 247–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Zwerina, M. Koenders, A. Hueber et al., “Anti IL-17A therapy inhibits bone loss in TNF-α-mediated murine arthritis by modulation of the T-cell balance,” European Journal of Immunology, vol. 42, no. 2, pp. 413–423, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. K. A. Charles, H. Kulbe, R. Soper et al., “The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans,” The Journal of Clinical Investigation, vol. 119, no. 10, pp. 3011–3023, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Itoh, N. Udagawa, N. Takahashi et al., “A critical role for interleukin-6 family-mediated Stat3 activation in osteoblast differentiation and bone formation,” Bone, vol. 39, no. 3, pp. 505–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Ogura, M. Murakami, Y. Okuyama et al., “Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction,” Immunity, vol. 29, no. 4, pp. 628–636, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Horai, S. Saijo, H. Tanioka et al., “Development of chronic inflammatory arthropathy resembling rheumatoid arthritis in interleukin 1 receptor antagonist-deficient mice,” Journal of Experimental Medicine, vol. 191, no. 2, pp. 313–320, 2000. View at Google Scholar
  48. M. Kotani, K. Hirata, S. Ogawa et al., “CD28-dependent differentiation into the effector/memory phenotype is essential for induction of arthritis in interleukin-1 receptor antagonist-deficient mice,” Arthritis & Rheumatism, vol. 54, no. 2, pp. 473–481, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. M. I. Koenders, I. Devesa, R. J. Marijnissen et al., “Interleukin-1 drives pathogenic Th17 cells during spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice,” Arthritis & Rheumatism, vol. 58, no. 11, pp. 3461–3470, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Nakae, S. Saijo, R. Horai, K. Sudo, S. Mori, and Y. Iwakura, “IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 10, pp. 5986–5990, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Nishihara, H. Ogura, N. Ueda et al., “IL-6-gp130-STAT3 in T cells directs the development of IL-17+ Th with a minimum effect on that of Treg in the steady state,” International Immunology, vol. 19, no. 6, pp. 695–702, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. P. G. Pietta, “Flavonoids as antioxidants,” Journal of Natural Products, vol. 63, no. 7, pp. 1035–1042, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. Z. P. Xiao, Z. Y. Peng, M. J. Peng, W. B. Yan, Y. Z. Ouyang, and H. L. Zhu, “Flavonoids health benefits and their molecular mechanism,” Mini-Reviews in Medicinal Chemistry, vol. 11, no. 2, pp. 169–177, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. D. E. Stevenson, J. M. Cooney, D. J. Jensen et al., “Comparison of enzymically glucuronidated flavonoids with flavonoid aglycones in an in vitro cellular model of oxidative stress protection,” In Vitro Cellular & Developmental Biology - Animal, vol. 44, no. 3-4, pp. 73–80, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. G. L. Hostetler, R. A. Ralston, and S. J. Schwartz, “Flavones: food sources, bioavailability, metabolism, and bioactivity,” Advances in Nutrition: An International Review Journal, vol. 8, no. 3, pp. 423–435, 2017. View at Publisher · View at Google Scholar · View at Scopus
  56. E. Corradini, P. Foglia, P. Giansanti, R. Gubbiotti, R. Samperi, and A. Lagana, “Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants,” Natural Product Research, vol. 25, no. 5, pp. 469–495, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. M. A. Lila, “Anthocyanins and human health: an in vitro investigative approach,” Journal of Biomedicine and Biotechnology, vol. 2004, no. 5, pp. 306–313, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. Q. Wang, W. Song, X. Qiao et al., “Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry,” Journal of Chromatography. A, vol. 1454, pp. 15–25, 2016. View at Publisher · View at Google Scholar · View at Scopus
  59. Y. Fu, J. Chen, Y. J. Li, Y. F. Zheng, and P. Li, “Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice,” Food Chemistry, vol. 141, no. 2, pp. 1063–1071, 2013. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Mao, L. Peng, A. Kang et al., “Influence of Jiegeng on pharmacokinetic properties of flavonoids and saponins in Gancao,” Molecules, vol. 22, no. 10, 2017. View at Publisher · View at Google Scholar · View at Scopus
  61. H. Hosseinzadeh and M. Nassiri-Asl, “Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review,” Phytotherapy Research, vol. 29, no. 12, pp. 1868–1886, 2015. View at Publisher · View at Google Scholar · View at Scopus
  62. J. M. Monk, T. Y. Hou, and R. S. Chapkin, “Recent advances in the field of nutritional immunology,” Expert Review of Clinical Immunology, vol. 7, no. 6, pp. 747–749, 2011. View at Publisher · View at Google Scholar · View at Scopus
  63. A. Salaritabar, B. Darvishi, F. Hadjiakhoondi et al., “Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review,” World Journal of Gastroenterology, vol. 23, no. 28, pp. 5097–5114, 2017. View at Publisher · View at Google Scholar · View at Scopus
  64. M. Burkard, C. Leischner, U. M. Lauer, C. Busch, S. Venturelli, and J. Frank, “Dietary flavonoids and modulation of natural killer cells: implications in malignant and viral diseases,” The Journal of Nutritional Biochemistry, vol. 46, pp. 1–12, 2017. View at Publisher · View at Google Scholar · View at Scopus
  65. A. Chu, “Antagonism by bioactive polyphenols against inflammation: a systematic view,” Inflammation & Allergy - Drug Targets, vol. 13, no. 1, pp. 34–64, 2014. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. Li, J. Yao, C. Han et al., “Quercetin, inflammation and immunity,” Nutrients, vol. 8, no. 3, p. 167, 2016. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Indra, S. Karyono, R. Ratnawati, and S. G. Malik, “Quercetin suppresses inflammation by reducing ERK1/2 phosphorylation and NF kappa B activation in leptin-induced human umbilical vein endothelial cells (HUVECs),” BMC Research Notes, vol. 6, no. 1, p. 275, 2013. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Y. Jhun, S. J. Moon, B. Y. Yoon et al., “Grape seed proanthocyanidin extract-mediated regulation of STAT3 proteins contributes to Treg differentiation and attenuates inflammation in a murine model of obesity-associated arthritis,” PLoS One, vol. 8, no. 11, article e78843, 2013. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Pérez-Cano, M. Massot-Cladera, M. Rodríguez-Lagunas, and M. Castell, “Flavonoids affect host-microbiota crosstalk through TLR modulation,” Antioxidants, vol. 3, no. 4, pp. 649–670, 2014. View at Publisher · View at Google Scholar
  70. A. Smeriglio, A. Calderaro, M. Denaro, G. Lagana, and E. Bellocco, “Effects of isolated isoflavones intake on health,” Current Medicinal Chemistry, vol. 24, 2017. View at Publisher · View at Google Scholar
  71. T. Shimizu, N. Shibuya, Y. Narukawa, N. Oshima, N. Hada, and F. Kiuchi, “Synergistic effect of baicalein, wogonin and oroxylin A mixture: multistep inhibition of the NF-κB signalling pathway contributes to an anti-inflammatory effect of Scutellaria root flavonoids,” Journal of Natural Medicines, vol. 72, no. 1, pp. 181–191, 2018. View at Publisher · View at Google Scholar · View at Scopus
  72. L. Lu, Q. Guo, and L. Zhao, “Overview of oroxylin A: a promising flavonoid compound,” Phytotherapy Research, vol. 30, no. 11, pp. 1765–1774, 2016. View at Publisher · View at Google Scholar · View at Scopus
  73. Y.-l. Wang, J.-m. Gao, and L.-Z. Xing, “Therapeutic potential of oroxylin A in rheumatoid arthritis,” International Immunopharmacology, vol. 40, pp. 294–299, 2016. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Y. Lee and W. Park, “Anti-inflammatory effects of oroxylin A on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid,” Experimental and Therapeutic Medicine, vol. 12, no. 1, pp. 151–156, 2016. View at Publisher · View at Google Scholar · View at Scopus
  75. M. Ye, Q. Wang, W. Zhang, Z. Li, Y. Wang, and R. Hu, “Oroxylin A exerts anti-inflammatory activity on lipopolysaccharide-induced mouse macrophage via Nrf2/ARE activation,” Biochemistry and Cell Biology, vol. 92, no. 5, pp. 337–348, 2014. View at Publisher · View at Google Scholar · View at Scopus
  76. Y.-C. Chen, L.-L. Yang, and T. J.-F. Lee, “Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation,” Biochemical Pharmacology, vol. 59, no. 11, pp. 1445–1457, 2000. View at Publisher · View at Google Scholar · View at Scopus
  77. J. Yang, X. Yang, Y. Chu, and M. Li, “Identification of baicalin as an immunoregulatory compound by controlling TH17 cell differentiation,” PLoS One, vol. 6, no. 2, article e17164, 2011. View at Publisher · View at Google Scholar · View at Scopus
  78. X. Yang, J. Yang, and H. Zou, “Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis,” Clinical and Developmental Immunology, vol. 2013, Article ID 268065, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Z. Wang, H. H. Wang, S. S. Huang et al., “Inhibitory effect of baicalin on collagen-induced arthritis in rats through the nuclear factor-κB pathway,” The Journal of Pharmacology and Experimental Therapeutics, vol. 350, no. 2, pp. 435–443, 2014. View at Publisher · View at Google Scholar · View at Scopus
  80. Y. Zhang, X. Li, B. Ciric et al., “Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway,” Scientific Reports, vol. 5, no. 1, 2015. View at Publisher · View at Google Scholar · View at Scopus
  81. M. Yimam, M. Pantier, L. Brownell, and Q. Jia, “UP446, analgesic and anti-inflammatory botanical composition,” Pharmacognosy Research, vol. 5, no. 3, pp. 139–145, 2013. View at Publisher · View at Google Scholar · View at Scopus
  82. H. Ma, X. He, Y. Yang, M. Li, D. Hao, and Z. Jia, “The genus Epimedium: an ethnopharmacological and phytochemical review,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 519–541, 2011. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Feng, L. Feng, Z. Yuan et al., “Icariin protects against glucocorticoid-induced osteoporosis in vitro and prevents glucocorticoid-induced osteocyte apoptosis in vivo,” Cell Biochemistry and Biophysics, vol. 67, no. 1, pp. 189–197, 2013. View at Publisher · View at Google Scholar · View at Scopus
  84. L. Chi, W. Gao, X. Shu, and X. Lu, “A natural flavonoid glucoside, icariin, regulates Th17 and alleviates rheumatoid arthritis in a murine model,” Mediators of Inflammation, vol. 2014, Article ID 392062, 10 pages, 2014. View at Publisher · View at Google Scholar · View at Scopus
  85. B. Liu, C. Xu, X. Wu et al., “Icariin exerts an antidepressant effect in an unpredictable chronic mild stress model of depression in rats and is associated with the regulation of hippocampal neuroinflammation,” Neuroscience, vol. 294, pp. 193–205, 2015. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Wei, B. Liu, J. Sun et al., “Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model,” Immunobiology, vol. 220, no. 6, pp. 789–797, 2015. View at Publisher · View at Google Scholar · View at Scopus
  87. R. Shen, W. Deng, C. Li, and G. Zeng, “A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis,” International Immunopharmacology, vol. 24, no. 2, pp. 224–231, 2015. View at Publisher · View at Google Scholar · View at Scopus
  88. F. Tao, C. Qian, W. Guo, Q. Luo, Q. Xu, and Y. Sun, “Inhibition of Th1/Th17 responses via suppression of STAT1 and STAT3 activation contributes to the amelioration of murine experimental colitis by a natural flavonoid glucoside icariin,” Biochemical Pharmacology, vol. 85, no. 6, pp. 798–807, 2013. View at Publisher · View at Google Scholar · View at Scopus
  89. T. Shoji, M. Mutsuga, T. Nakamura, T. Kanda, H. Akiyama, and Y. Goda, “Isolation and structural elucidation of some procyanidins from apple by low-temperature nuclear magnetic resonance,” Journal of Agricultural and Food Chemistry, vol. 51, no. 13, pp. 3806–3813, 2003. View at Publisher · View at Google Scholar · View at Scopus
  90. S. Tanaka, K. Furuya, K. Yamamoto et al., “Procyanidin B2 gallates inhibit IFN-γ and IL-17 production in T cells by suppressing T-bet and RORγt expression,” International Immunopharmacology, vol. 44, pp. 87–96, 2017. View at Publisher · View at Google Scholar · View at Scopus
  91. K. Nakamura, H. Matsuoka, S. Nakashima, T. Kanda, T. Nishimaki-Mogami, and H. Akiyama, “Oral administration of apple condensed tannins delays rheumatoid arthritis development in mice via downregulation of T helper 17 (Th17) cell responses,” Molecular Nutrition & Food Research, vol. 59, no. 7, pp. 1406–1410, 2015. View at Publisher · View at Google Scholar · View at Scopus
  92. Z. Ma and H. Zhang, “Phytochemical constituents, health benefits, and industrial applications of grape seeds: a mini-review,” Antioxidants, vol. 6, no. 3, 2017. View at Publisher · View at Google Scholar · View at Scopus
  93. M. L. Cho, Y. J. Heo, M. K. Park et al., “Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis,” Immunology Letters, vol. 124, no. 2, pp. 102–110, 2009. View at Publisher · View at Google Scholar · View at Scopus
  94. M. K. Park, J. S. Park, M. L. Cho et al., “Grape seed proanthocyanidin extract (GSPE) differentially regulates Foxp3+ regulatory and IL-17+ pathogenic T cell in autoimmune arthritis,” Immunology Letters, vol. 135, no. 1-2, pp. 50–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. S. F. Ahmad, K. M. A. Zoheir, H. E. Abdel-Hamied et al., “Grape seed proanthocyanidin extract has potent anti-arthritic effects on collagen-induced arthritis by modifying the T cell balance,” International Immunopharmacology, vol. 17, no. 1, pp. 79–87, 2013. View at Publisher · View at Google Scholar · View at Scopus
  96. F. Chen, X. Ye, Y. Yang et al., “Proanthocyanidins from the bark of Metasequoia glyptostroboides ameliorate allergic contact dermatitis through directly inhibiting T cells activation and Th1/Th17 responses,” Phytomedicine, vol. 22, no. 4, pp. 510–515, 2015. View at Publisher · View at Google Scholar · View at Scopus
  97. A. Guo, D. He, H.-B. Xu, C.-A. Geng, and J. Zhao, “Promotion of regulatory T cell induction by immunomodulatory herbal medicine licorice and its two constituents,” Scientific Reports, vol. 5, no. 1, article 14046, 2015. View at Publisher · View at Google Scholar · View at Scopus
  98. X. Chen, D. Fang, L. Li et al., “Glycyrrhizin ameliorates experimental colitis through attenuating interleukin-17-producing T cell responses via regulating antigen-presenting cells,” Immunologic Research, vol. 65, no. 3, pp. 666–680, 2017. View at Publisher · View at Google Scholar · View at Scopus
  99. M. A. Alam, N. Subhan, M. M. Rahman, S. J. Uddin, H. M. Reza, and S. D. Sarker, “Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action,” Advances in Nutrition: An International Review Journal, vol. 5, no. 4, pp. 404–417, 2014. View at Publisher · View at Google Scholar · View at Scopus
  100. Y. Watanabe, Y. Nagai, H. Honda et al., “Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice,” Scientific Reports, vol. 6, no. 1, article 23097, 2016. View at Publisher · View at Google Scholar · View at Scopus
  101. L. B. A. Fontes, D. dos Santos Dias, L. S. A. de Carvalho et al., “Immunomodulatory effects of licochalcone A on experimental autoimmune encephalomyelitis,” Journal of Pharmacy and Pharmacology, vol. 66, no. 6, pp. 886–894, 2014. View at Publisher · View at Google Scholar · View at Scopus
  102. D. Esposito, A. Chen, M. H. Grace, S. Komarnytsky, and M. A. Lila, “Inhibitory effects of wild blueberry anthocyanins and other flavonoids on biomarkers of acute and chronic inflammation in vitro,” Journal of Agricultural and Food Chemistry, vol. 62, no. 29, pp. 7022–7028, 2014. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Smeriglio, D. Barreca, E. Bellocco, and D. Trombetta, “Chemistry, pharmacology and health benefits of anthocyanins,” Phytotherapy Research, vol. 30, no. 8, pp. 1265–1286, 2016. View at Publisher · View at Google Scholar · View at Scopus
  104. H. K. Min, S. M. Kim, S. Y. Baek et al., “Anthocyanin extracted from black soybean seed coats prevents autoimmune arthritis by suppressing the development of Th17 cells and synthesis of proinflammatory cytokines by such cells, via inhibition of NF-κB,” PLoS One, vol. 10, no. 11, article e0138201, 2015. View at Publisher · View at Google Scholar · View at Scopus
  105. A. Mussener, M. J. Litton, E. Lindroos, and L. Klareskog, “Cytokine production in synovial tissue of mice with collagen-induced arthritis (CIA),” Clinical & Experimental Immunology, vol. 107, no. 3, pp. 485–493, 1997. View at Publisher · View at Google Scholar · View at Scopus