Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2012, Article ID 476595, 13 pages
http://dx.doi.org/10.1155/2012/476595
Research Article

Nonsterol Triterpenoids as Major Constituents of Olea europaea

1Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique (UPR 2357), Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg, France
2Institut für Molekulare Physiologie und Biotechnologie der Pflanzen (IMBIO), Universität Bonn, Kirschallee 1, 53115 Bonn, Germany

Received 5 May 2011; Accepted 20 October 2011

Academic Editor: Angel Catala

Copyright © 2012 Naïm Stiti and Marie-Andrée Hartmann. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. B. Mahato, A. K. Nandy, and G. Roy, “Triterpenoids,” Phytochemistry, vol. 31, no. 7, pp. 2199–2249, 1992. View at Google Scholar · View at Scopus
  2. R. Xu, G. C. Fazio, and S. P. Matsuda, “On the origins of triterpenoid skeletal diversity,” Phytochemistry, vol. 65, no. 3, pp. 261–291, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. D. Connolly and R. A. Hill, “Triterpenoids,” Natural Product Reports, vol. 27, no. 1, pp. 79–132, 2010. View at Google Scholar · View at Scopus
  4. J. P. Vincken, L. Heng, A. de Groot, and H. Gruppen, “Saponins, classification and occurrence in the plant kingdom,” Phytochemistry, vol. 68, no. 3, pp. 275–297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Akihisa, K. Yasukawa, and Y. Kasahara, “Triterpenoids from the flowers of Compositae and their anti-inflammatory effects,” Current Topics in Phytochemistry, vol. 1, pp. 137–144, 1997. View at Google Scholar
  6. G. Topçu, “Bioactive triterpenoids from Salvia species,” Journal of Natural Products, vol. 69, no. 3, pp. 482–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Dzubak, M. Hajduch, D. Vydra et al., “Pharmacological activities of natural triterpenoids and their therapeutic implications,” Natural Product Reports, vol. 23, no. 3, pp. 394–411, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. A. Hartmann, “Plant sterols and the membrane environment,” Trends in Plant Science, vol. 3, no. 5, pp. 170–175, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Schaller, “The role of sterols in plant growth and development,” Progress in Lipid Research, vol. 42, no. 3, pp. 163–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. R. Van der Heijden, D. R. Threlfall, R. Verpoorte, and I. M. Whitehead, “Regulation and enzymology of pentacyclic triterpenoid phytoalexin biosynthesis in cell suspension cultures of Tabernaemontana divaricata,” Phytochemistry, vol. 28, no. 11, pp. 2981–2988, 1989. View at Google Scholar · View at Scopus
  11. K. Papadopoulou, R. E. Melton, M. Leggett, M. J. Daniels, and A. E. Osbourn, “Compromised disease resistance in saponin-deficient plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 22, pp. 12923–12928, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Bauer, E. Schulte, and H. P. Thier, “Composition of the surface wax from tomatoes,” European Food Research and Technology, vol. 219, no. 3, pp. 223–228, 2004. View at Google Scholar
  13. S. Mintz-Oron, T. Mandel, I. Rogachev et al., “Gene expression and metabolism in tomato fruit surface tissues,” Plant Physiology, vol. 147, no. 2, pp. 823–851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Shan, W. K. Wilson, D. R. Phillips, B. Bartel, and S. P. Matsuda, “Trinorlupeol: a major nonsterol triterpenoid in Arabidopsis,” Organic Letters, vol. 10, no. 10, pp. 1897–1900, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Van Maarseveen and R. Jetter, “Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves,” Phytochemistry, vol. 70, no. 7, pp. 899–906, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Guhling, B. Hobl, T. Yeats, and R. Jetter, “Cloning and characterization of a lupeol synthase involved in the synthesis of epicuticular wax crystals on stem and hypocotyl surfaces of Ricinus communis,” Archives of Biochemistry and Biophysics, vol. 448, no. 1-2, pp. 60–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. B. R. Simoneit, P. M. Medeiros, and E. Wollenweber, “Triterpenoids as major components of the insect-trapping glue of Roridula species,” Zeitschrift für Naturforschung C, vol. 63, no. 9-10, pp. 625–630, 2008. View at Google Scholar · View at Scopus
  18. N. Stiti, S. Triki, and M. A. Hartmann, “Formation of triterpenoids throughout Olea europaea fruit ontogeny,” Lipids, vol. 42, no. 1, pp. 55–67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Liu, R. Rajendram, and L. Zhang, “Effects of oleanolic acid and maslinic acid on glucose and lipid metabolism: implications for the beneficial effects of olive oil on health,” in Olives and Olive Oil in Health and Disease Prevention, V. R. Preedy and R. R. Watson, Eds., pp. 1423–1429, Oxford Academic, Oxford, UK, 2010. View at Google Scholar
  20. G. Bianchi, C. Murelli, and G. Vlahov, “Surface waxes from olive fruits,” Phytochemistry, vol. 31, no. 10, pp. 3503–3506, 1992. View at Google Scholar · View at Scopus
  21. M. A. Hartmann and P. Benveniste, “Plant membrane sterols: isolation, identification, and biosynthesis,” Methods in Enzymology, vol. 148, pp. 632–650, 1987. View at Google Scholar
  22. H. Budzikiewicz, J. M. Wilson, and C. Djerassi, “Mass spectrometry in structural and stereochemical problems. XXXII. Pentacyclic triterpenes,” Journal of the American Chemical Society, vol. 85, no. 22, pp. 3688–3699, 1963. View at Google Scholar · View at Scopus
  23. K. Shoijima, Y. Arai, K. masuda, Y. Takase, T. Ageta, and H. Ageta, “Mass spectra of pentacyclic triterpenoids,” Chemical and Pharmaceutical Bulletin, vol. 40, no. 7, pp. 1683–1690, 1992. View at Google Scholar · View at Scopus
  24. S. Ngouela, B. Nyasse, E. Tsamo, B. L. Sondengam, and J. D. Connolly, “Spathodic acid: a triterpene acid from the stem bark of Spathodea campanulata,” Phytochemistry, vol. 29, no. 12, pp. 3959–3961, 1990. View at Google Scholar · View at Scopus
  25. K. Hidaka, M. Ito, Y. Matsuda, H. Kohda, K. Yamasaki, and J. Yamahara, “A triterpene and saponin from roots of Ilex pubescens,” Phytochemistry, vol. 26, no. 7, pp. 2023–2027, 1987. View at Google Scholar · View at Scopus
  26. H. Saimaru, Y. Orihara, P. Tansakul, Y. H. Kang, M. Shibuya, and Y. Ebizuka, “Production of triterpene acids by cell suspension cultures of Olea europaea,” Chemical and Pharmaceutical Bulletin, vol. 55, no. 5, pp. 784–788, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Ehlting, V. Sauveplane, A. Olry, J. F. Ginglinger, N. J. Provart, and D. Werck-Reichhart, “An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana,” BMC Plant Biology, vol. 8, pp. 47–65, 2008. View at Google Scholar
  28. M. A. Naoumkina, L. V. Modolo, D. V. Huhman et al., “Genomic and coexpression analyses predict multiple genes involved in triterpene saponin biosynthesis in Medicago truncatula,” The Plant Cell, vol. 22, no. 3, pp. 850–866, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Shibuya, M. Hoshino, Y. Katsube, H. Hayashi, T. Kushiro, and Y. Ebizuka, “Identification of β-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay,” FEBS Journal, vol. 273, no. 5, pp. 948–959, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Jäger, H. Trojan, T. Kopp, M. N. Laszczyk, and A. Scheffler, “Pentacyclic triterpene distribution in various plants—rich sources for a new group of multi-potent plant extracts,” Molecules, vol. 14, no. 6, pp. 2016–2031, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Akihisa, K. Yasukawa, H. Oinuma et al., “Triterpene alcohols from the flowers of compositae and their anti- inflammatory effects,” Phytochemistry, vol. 43, no. 6, pp. 1255–1260, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Ukiya, T. Akihisa, K. Yasukawa et al., “Constituents of compositae plants. 2. Triterpene diols, triols, and their 3-O-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects,” Journal of Agricultural and Food Chemistry, vol. 49, no. 7, pp. 3187–3197, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Akihisa, S. G. Franzblau, M. Ukiya et al., “Antitubercular activity of triterpenoids from asteraceae flowers,” Biological and Pharmaceutical Bulletin, vol. 28, no. 1, pp. 158–160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. R. K. Hota and M. Bapuji, “Triterpenoids from the resin of Shorea Robusta,” Phytochemistry, vol. 35, no. 4, pp. 1073–1074, 1994. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Bianchi, G. Vlahov, C. Anglani, and C. Murelli, “Epicuticular wax of olive leaves,” Phytochemistry, vol. 32, no. 1, pp. 49–52, 1993. View at Google Scholar
  36. N. Sánchez-Ávila, F. Priego-Capote, J. Ruiz-Jiménez, and M. D. Luque de Castro, “Fast and selective determination of triterpenic compounds in olive leaves by liquid chromatography-tandem mass spectrometry with multiple reaction monitoring after microwave-assisted extraction,” Talanta, vol. 78, no. 1, pp. 40–48, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. N. Banno, T. Akihisa, H. Tokuda et al., “Triterpene acids from the leaves of Perilla frutescens and their anti-inflammatory and antitumor-promoting effects,” Bioscience, Biotechnology and Biochemistry, vol. 68, no. 1, pp. 85–90, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. N. Banno, T. Akihisa, H. Tokuda et al., “Anti-inflammatory and antitumor-promoting effects of the triterpene acids from the leaves of Eriobotrya japonica,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 1995–1999, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. B. J. W. Cole, M. D. Bentley, and Y. Hua, “Triterpenoid extractives in the outer bark of Betula lenta (Black birch),” Holzforschung, vol. 45, no. 4, pp. 265–268, 1991. View at Google Scholar
  40. I. Habiyaremye, T. Stevanovic-Janezic, B. Riedl, F. X. Garneau, and F. I. Jean, “Pentacyclic triterpene constituents of yellow birch bark from Quebec,” Journal of Wood Chemistry and Technology, vol. 22, no. 2-3, pp. 83–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. D. Abramson, L. J. Goad, and T. W. Goodwin, “Triterpenes and sterols of Buxus sempervirens and local variations in their levels,” Phytochemistry, vol. 12, no. 9, pp. 2211–2216, 1973. View at Google Scholar · View at Scopus
  42. T. Itoh, K. Yoshida, T. Yatsu, T. Tamura, and T. Matsumoto, “Triterpene alcohols and sterols of Spanish olive oil,” Journal of the American Oil Chemists Society, vol. 58, no. 4, pp. 545–550, 1981. View at Publisher · View at Google Scholar · View at Scopus
  43. A. R. Aguilar-Gonzalez, G. J. Mena-Rejón, N. Padilla-Montaño, A. Toscano, and L. Quijano, “Triterpenoids from Hippocratea excelsa. The crystal structure of 29-hydroxytaraxerol,” Zeitschrift für Naturforschung B, vol. 60, no. 5, pp. 577–584, 2005. View at Google Scholar · View at Scopus
  44. P. Bouvier-Navé, T. Husselstein, T. Desprez, and P. Benveniste, “Identification of cDNAs encoding sterol methyl-transferases involved in the second methylation step of plant sterol biosynthesis,” European Journal of Biochemistry, vol. 246, no. 2, pp. 518–529, 1997. View at Google Scholar · View at Scopus
  45. S. Azadmard-Damirchi, G. P. Savage, and P. C. Dutta, “Sterol fractions in hazelnut and virgin olive oils and 4,4′- dimethylsterols as possible markers for detection of adulteration of virgin olive oil,” Journal of the American Oil Chemists' Society, vol. 82, no. 10, pp. 717–725, 2005. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Sakurai and S. Fujioka, “Studies on biosynthesis of brassinosteroids,” Bioscience, Biotechnology and Biochemistry, vol. 61, no. 5, pp. 757–762, 1997. View at Google Scholar · View at Scopus
  47. L. Achnine, D. V. Huhman, M. A. Farag, L. W. Sumner, J. W. Blount, and R. A. Dixon, “Genomics-based selection and functional characterization of triterpene glycosyltransferases from the model legume Medicago truncatula,” Plant Journal, vol. 41, no. 6, pp. 875–887, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. D. Meesapyodsuk, J. Balsevich, D. W. Reed, and P. S. Covello, “Saponin biosynthesis in Saponaria vaccaria. cDNAs encoding β-amyrin synthase and a triterpene carboxylic acid glucosyltransferase,” Plant Physiology, vol. 143, no. 2, pp. 959–969, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Lodeiro, Q. Xiong, W. K. Wilson, M. D. Kolesnikova, C. S. Onak, and S. P. T. Matsuda, “An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis,” Journal of the American Chemical Society, vol. 129, no. 36, pp. 11213–11222, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Husselstein-Muller, H. Schaller, and P. Benveniste, “Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana,” Plant Molecular Biology, vol. 45, no. 1, pp. 75–92, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Suzuki, T. Xiang, K. Ohyama et al., “Lanosterol synthase in dicotyledonous plants,” Plant and Cell Physiology, vol. 47, no. 5, pp. 565–571, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. D. R. Phillips, J. M. Rasbery, B. Bartel, and S. P. Matsuda, “Biosynthetic diversity in plant triterpene cyclization,” Current Opinion in Plant Biology, vol. 9, no. 3, pp. 305–314, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Shibuya, H. Zhang, A. Endo, K. Shishikura, T. Kushiro, and Y. Ebizuka, “Two branches of the lupeol synthase gene in the molecular evolution of plant oxidosqualene cyclases,” European Journal of Biochemistry, vol. 266, no. 1, pp. 302–307, 1999. View at Publisher · View at Google Scholar · View at Scopus
  54. M. D. Kolesnikova, Q. Xiong, S. Lodeiro, L. Hua, and S. P. Matsuda, “Lanosterol biosynthesis in plants,” Archives of Biochemistry and Biophysics, vol. 447, no. 1, pp. 87–95, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Martín, J. Carvalho, E. Ibeas, M. Hernández, V. Ruiz-Gutierrez, and M. L. Nieto, “Acidic triterpenes compromise growth and survival of astrocytoma cell lines by regulating reactive oxygen species accumulation,” Cancer Research, vol. 67, no. 8, pp. 3741–3751, 2007. View at Publisher · View at Google Scholar · View at Scopus