Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2012, Article ID 543784, 11 pages
http://dx.doi.org/10.1155/2012/543784
Research Article

Fatty Acid Composition of Phospholipids and in the Central and External Positions of Triacylglycerol in Muscle and Subcutaneous Fat of Beef Steers Fed Diets Supplemented with Oil Containing n6 and n3 Fatty Acids While Undergoing One of Three 48 h Feed Withdrawal Treatments

1Agriculture and Agri-Food Canada, 5403 1st Avenve South P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1
2Department of Animal Sciences, Washington State University, Pullman, WA 99163-646351, USA

Received 22 March 2012; Accepted 14 May 2012

Academic Editor: Angel Catala

Copyright © 2012 C. Margetak et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. U. Risérus, P. Arner, K. Brismar, and B. Vessby, “Treatment with dietary trans10cis12 conjugated linoleic acid causes isomer-specific insulin resistance in obese men with the metabolic syndrome,” Diabetes Care, vol. 25, no. 9, pp. 1516–1521, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. M. E. R. Dugan, J. L. Aalhus, A. L. Schaefer, and J. K. G. Kramer, “The effect of conjugated linoleic acid on fat to lean repartitioning and feed conversion in pigs,” Canadian Journal of Animal Science, vol. 77, no. 4, pp. 723–725, 1997. View at Google Scholar · View at Scopus
  3. M. W. Pariza, S. H. Ashoor, F. S. Chu, and D. B. Lund, “Effects of temperature and time on mutagen formation in pan fried hamburger,” Cancer Letters, vol. 7, no. 2-3, pp. 63–69, 1979. View at Google Scholar · View at Scopus
  4. J.-M. Gaullier, J. Halse, K. Høye et al., “Conjugated linoleic acid supplementation for 1 y reduces body fat mass in healthy overweight humans,” American Journal of Clinical Nutrition, vol. 79, no. 6, pp. 1118–1125, 2004. View at Google Scholar · View at Scopus
  5. P. S. Mir, E. K. Okine, L. Goonewardene, M. L. He, and Z. Mir, “Effects of synthetic conjugated linoleic acid (CLA) or bio-formed CLA as high CLA beef on rat growth and adipose tissue development,” Canadian Journal of Animal Science, vol. 83, no. 3, pp. 583–592, 2003. View at Google Scholar · View at Scopus
  6. M. L. He, P. S. Mir, E. K. Okine, and H. Napadajlo, “Effect of conjugated linoleic acids from beef or industrial hydrogenation on growth and adipose tissue characteristics of rats,” Nutrition and Metabolism, vol. 6, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. E. E. Berry and T. A. B. Sanders, “Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia,” Proceedings of the Nutrition Society, vol. 64, no. 2, pp. 205–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Y. Yang and A. Kuksis, “Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols,” Journal of Lipid Research, vol. 32, no. 7, pp. 1173–1186, 1991. View at Google Scholar · View at Scopus
  9. J. M. Chardigny, E. Masson, J. P. Sergiel et al., “The position of rumenic acid on triacylglycerols alters its bioavailability in rats,” Journal of Nutrition, vol. 133, no. 12, pp. 4212–4214, 2003. View at Google Scholar · View at Scopus
  10. L. J. Paterson, R. J. Weselake, P. S. Mir, and Z. Mir, “Positional distribution of CLA in TAG of lamb tissues,” Lipids, vol. 37, no. 6, pp. 605–611, 2002. View at Google Scholar · View at Scopus
  11. P. S. Mir, T. A. McAllister, S. Zaman et al., “Effect of dietary sunflower oil and vitamin E on beef cattle performance, carcass characteristics and meat quality,” Canadian Journal of Animal Science, vol. 83, no. 1, pp. 53–66, 2003. View at Google Scholar · View at Scopus
  12. M. L. He, P. S. Mir, R. Sharma et al., “Effect of supplementation of beef steer diets with oil containing n6 and n3 fatty acids and 48 h feed withdrawal treatments on animal productivity, carcass characteristics and fatty acid composition,” Livestock Science, vol. 142, no. 1–3, pp. 253–263, 2011. View at Publisher · View at Google Scholar
  13. Canadian Council on Animal Care, Guide to the Care and Use of Experimental Animals, vol. 1, Canadian Council on Animal Care, Ottawa, Canada, 2nd edition, 2003, http://www.ccac.ca/en_/standards/guidelines/.
  14. P. S. Mir, M. L. He, K. Schwartzkopf-Genswein et al., “Effect of supplementation of beef steer diets with oil containing n6 and n3 fatty acids and 48 h feed withdrawal treatments on plasma hormone profiles and adipose tissue cellularity,” Livestock Science, vol. 146, no. 2-3, pp. 140–148, 2012. View at Google Scholar
  15. P. S. Mir, K. S. Schwartzkopf-Genswein, T. Entz, K. K. Klein, E. Okine, and M. V. Dodson, “Effect of a short duration feed withdrawal followed by full feeding on marbling fat in beef carcasses,” Livestock Science, vol. 116, no. 1 3, pp. 22–29, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Schulte, “Economical micromethod for determination of polar components in frying fats,” European Journal of Lipid Science and Technology, vol. 106, no. 11, pp. 772–776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Lock and P. C. Garnsworthy, “Independent effects of dietary linoleic and linolenic fatty acids on the conjugated linoleic acid content of cows' milk,” Animal Science, vol. 74, no. 1, pp. 163–176, 2002. View at Google Scholar · View at Scopus
  18. J. K. G. Kramer, V. Fellner, M. E. R. Dugan, F. D. Sauer, M. M. Mossoba, and M. P. Yurawecz, “Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids,” Lipids, vol. 32, no. 11, pp. 1219–1228, 1997. View at Google Scholar · View at Scopus
  19. SAS Institute Inc., SAS Online DOC 9.1.3., Cary, NC, USA, SAS Institute Inc., 2005.
  20. R. G. D. Steel and J. H. Torrie, Principles and Procedures of Statistics, McGraw-Hill Book Company, Toronto, Canada, 1960.
  21. G. J. Hausman, M. V. Dodson, K. Ajuwon et al., “Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals,” Journal of Animal Science, vol. 87, no. 4, pp. 1218–1246, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. D. Clarke, “Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome,” Journal of Nutrition, vol. 131, no. 4, pp. 1129–1132, 2001. View at Google Scholar · View at Scopus
  23. S. B. Smith, A. Yang, T. W. Larsen, and R. K. Tume, “Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation,” Lipids, vol. 33, no. 2, pp. 197–207, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Dannenberger, G. Nuernberg, N. Scollan, K. Ender, and K. Nuernberg, “Diet alters the fatty acid composition of individual phospholipid classes in beef muscle,” Journal of Agricultural and Food Chemistry, vol. 55, no. 2, pp. 452–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Karupaiah and K. Sundram, “Effects of stereospecific positioning of fatty acids in triacylglycerol structures in native and randomized fats: a review of their nutritional implications,” Nutrition and Metabolism, vol. 4, article 16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Desroches, P. Y. Chouinard, I. Galibois et al., “Lack of effect of dietary conjugated linoleic acids naturally incorporated into butter on the lipid profile and body composition of overweight and obese men,” American Journal of Clinical Nutrition, vol. 82, no. 2, pp. 309–319, 2005. View at Google Scholar · View at Scopus