Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2013, Article ID 246597, 6 pages
http://dx.doi.org/10.1155/2013/246597
Review Article

PPARγ Networks in Cell Signaling: Update and Impact of Cyclic Phosphatidic Acid

Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan

Received 24 November 2012; Revised 2 January 2013; Accepted 2 January 2013

Academic Editor: Robert Salomon

Copyright © 2013 Tamotsu Tsukahara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Evans, “The nuclear receptor superfamily: a Rosetta stone for physiology,” Molecular Endocrinology, vol. 19, no. 6, pp. 1429–1438, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. E. Lebovitz, “Differentiating members of the thiazolidinedione class: a focus on safety,” Diabetes/Metabolism Research and Reviews, vol. 18, supplement 2, pp. S23–S29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. T. M. McIntyre, A. V. Pontsler, A. R. Silva et al., “Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARγ agonist,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 1, pp. 131–136, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Tsukahara, R. Tsukahara, S. Yasuda et al., “Different residues mediate recognition of 1-O-oleyl-lysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor,” Journal of Biological Chemistry, vol. 281, no. 6, pp. 3398–3407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. F. J. Schopfer, Y. Lin, P. R. S. Baker et al., “Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor γ ligand,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 7, pp. 2340–2345, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. W. H. Moolenaar, “Lysophosphatidic acid, a multifunctional phospholipid messenger,” Journal of Biological Chemistry, vol. 270, no. 22, pp. 12949–12952, 1995. View at Google Scholar · View at Scopus
  7. M. Ricote and C. K. Glass, “PPARs and molecular mechanisms of transrepression,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 926–935, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Tontonoz and B. M. Spiegelman, “Fat and beyond: the diverse biology of PPARγ,” Annual Review of Biochemistry, vol. 77, pp. 289–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. T. A. Cock, S. M. Houten, and J. Auwerx, “Peroxisome proliferator-activated receptor-γ: too much of a good thing causes harm,” EMBO Reports, vol. 5, no. 2, pp. 142–147, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Duval, G. Chinetti, F. Trottein, J. C. Fruchart, and B. Staels, “The role of PPARs in atherosclerosis,” Trends in Molecular Medicine, vol. 8, no. 9, pp. 422–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. W. L. Yang and H. Frucht, “Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells,” Carcinogenesis, vol. 22, no. 9, pp. 1379–1383, 2001. View at Google Scholar · View at Scopus
  12. K. Murakami-Murofushi, A. Uchiyama, Y. Fujiwara et al., “Biological functions of a novel lipid mediator, cyclic phosphatidic acid,” Biochimica et Biophysica Acta, vol. 1582, no. 1–3, pp. 1–7, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. K. Murakami-Murofushi, S. Kobayashi, K. Onimura et al., “Selective inhibition of DNA polymerase-α: family with chemically synthesized derivatives of PHYLPA, a unique Physarum lysophosphatidic acid,” Biochimica et Biophysica Acta, vol. 1258, no. 1, pp. 57–60, 1995. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Fujiwara, “Cyclic phosphatidic acid—a unique bioactive phospholipid,” Biochimica et Biophysica Acta, vol. 1781, no. 9, pp. 519–524, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Tsukahara, R. Tsukahara, Y. Fujiwara et al., “Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARγ by cyclic phosphatidic acid,” Molecular Cell, vol. 39, no. 3, pp. 421–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Tsukahara, S. Hanazawa, T. Kobayashi, Y. Iwamoto, and K. Murakami-Murofushi, “Cyclic phosphatidic acid decreases proliferation and survival of colon cancer cells by inhibiting peroxisome proliferator-activated receptor γ,” Prostaglandins and Other Lipid Mediators, vol. 93, no. 3-4, pp. 126–133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. M. ] Mukai, F. Imamura, M. Ayaki et al., “Inhibition of tumor invasion and metastasis by a novel lysophosphatidic acid (cyclic LPA),” International Journal of Cancer, vol. 81, pp. 918–922, 1999. View at Google Scholar
  18. M. Mukai, T. Iwasaki, M. Tatsuta et al., “Cyclic phosphatidic acid inhibits RhoA-mediated autophosphorylation of FAK at Tyr-397 and subsequent tumor-cell invasion,” International Journal of Oncology, vol. 22, no. 6, pp. 1247–1256, 2003. View at Google Scholar · View at Scopus
  19. J. Berger and D. E. Moller, “The mechanisms of action of PPARs,” Annual Review of Medicine, vol. 53, pp. 409–435, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Kieć-Wilk, A. Dembińska-Kieć, A. Olszanecka, M. Bodzioch, and K. Kawecka-Jaszcz, “The selected pathophysiological aspects of PPARs activation,” Journal of Physiology and Pharmacology, vol. 56, no. 2, pp. 149–162, 2005. View at Google Scholar · View at Scopus
  21. P. Tontonoz, E. Hu, and B. M. Spiegelman, “Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor,” Cell, vol. 79, no. 7, pp. 1147–1156, 1994. View at Google Scholar · View at Scopus
  22. G. Medina-Gomez, S. Virtue, C. Lelliott et al., “The link between nutritional status and insulin sensitivity is dependent on the adipocyte-specific peroxisome proliferator-activated receptor-γ2 isoform,” Diabetes, vol. 54, no. 6, pp. 1706–1716, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. D. S. Lala, R. Mukherjee, I. G. Schulman et al., “Activation of specific RXR heterodimers by an antagonist of RXR homodimers,” Nature, vol. 383, no. 6599, pp. 450–453, 1996. View at Publisher · View at Google Scholar · View at Scopus
  24. R. N. Cohen, “Nuclear receptor corepressors and PPARgamma,” Nucl Recept Signal, vol. 4, article e003, 2006. View at Google Scholar
  25. P. Puigserver and B. M. Spiegelman, “Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator,” Endocrine Reviews, vol. 24, no. 1, pp. 78–90, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. T. S. Mikkelsen, M. Ku, D. B. Jaffe et al., “Genome-wide maps of chromatin state in pluripotent and lineage-committed cells,” Nature, vol. 448, no. 7153, pp. 553–560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. M. Forman, P. Tontonoz, J. Chen, R. P. Brun, B. M. Spiegelman, and R. M. Evans, “15-deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ,” Cell, vol. 83, no. 5, pp. 803–812, 1995. View at Google Scholar · View at Scopus
  28. G. Tigyi, “Aiming drug discovery at lysophosphatidic acid targets,” British Journal of Pharmacology, vol. 161, no. 2, pp. 241–270, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Tigyi and R. Miledi, “Lysophosphatidates bound to serum albumin activate membrane currents in Xenopus oocytes and neurite retraction in PC12 pheochromocytoma cells,” Journal of Biological Chemistry, vol. 267, no. 30, pp. 21360–21367, 1992. View at Google Scholar · View at Scopus
  30. G. Tigyi and A. L. Parrill, “Molecular mechanisms of lysophosphatidic acid action,” Progress in Lipid Research, vol. 42, no. 6, pp. 498–526, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Schober and W. Siess, “Lysophosphatidic acid in atherosclerotic diseases,” British Journal of Pharmacology, vol. 167, pp. 465–482, 2012. View at Google Scholar
  32. G. A. Fishbein and M. C. Fishbein, “Arteriosclerosis: rethinking the current classification,” Archives of Pathology and Laboratory Medicine, vol. 133, no. 8, pp. 1309–1316, 2009. View at Google Scholar · View at Scopus
  33. N. Shibata and C. K. Glass, “Regulation of macrophage function in inflammation and atherosclerosis,” Journal of Lipid Research, vol. 50, supplement, pp. S277–S281, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. G. Gerrity, “The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions,” American Journal of Pathology, vol. 103, no. 2, pp. 181–190, 1981. View at Google Scholar · View at Scopus
  35. K. Yoshida, W. Nishida, K. Hayashi et al., “Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo,” Circulation, vol. 108, no. 14, pp. 1746–1752, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Zhang, D. L. Baker, S. Yasuda et al., “Lysophosphatidic acid induces neointima formation through PPARγ activation,” Journal of Experimental Medicine, vol. 199, no. 6, pp. 763–774, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. C. H. Lee and R. M. Evans, “Peroxisome proliferator-activated receptor-γ in macrophage lipid homeostasis,” Trends in Endocrinology and Metabolism, vol. 13, no. 8, pp. 331–335, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Febbraio, D. P. Hajjar, and R. L. Silverstein, “CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism,” Journal of Clinical Investigation, vol. 108, no. 6, pp. 785–791, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. P. C. Moore, M. A. Ugas, D. K. Hagman, S. D. Parazzoli, and V. Poitout, “Evidence against the involvement of oxidative stress in fatty acid inhibition of insulin secretion,” Diabetes, vol. 53, no. 10, pp. 2610–2616, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. N. Ohgami, R. Nagai, M. Ikemoto et al., “CD36, a member of the class B scavenger receptor family, as a receptor for advanced glycation end products,” Journal of Biological Chemistry, vol. 276, no. 5, pp. 3195–3202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. M. S. Brown, S. K. Basu, and J. R. Falck, “The scavenger cell pathway for lipoprotein degradation: specificity of the binding site that mediates the uptake of negatively-charged LDL by macrophages,” Journal of Supramolecular and Cellular Biochemistry, vol. 13, no. 1, pp. 67–81, 1980. View at Google Scholar · View at Scopus
  42. D. J. Gallagher and N. Kemeny, “Metastatic colorectal cancer: from improved survival to potential cure,” Oncology, vol. 78, no. 3-4, pp. 237–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Manzano and P. Perez-Segura, “Colorectal cancer chemoprevention: is this the future of colorectal cancer prevention?” Scientific World Journal, vol. 2012, Article ID 327341, 8 pages, 2012. View at Google Scholar
  44. E. Saez, P. Tontonoz, M. C. Nelson et al., “Activators of the nuclear receptor PPARγ enhance colon polyp formation,” Nature Medicine, vol. 4, no. 9, pp. 1058–1061, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. H. P. Koeffler, “Peroxisome proliferator-activated receptor γ and cancers,” Clinical Cancer Research, vol. 9, no. 1, pp. 1–9, 2003. View at Google Scholar · View at Scopus
  46. G. D. Girnun, W. M. Smith, S. Drori et al., “APC-dependent suppression of colon carcinogenesis by PPARγ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13771–13776, 2002. View at Publisher · View at Google Scholar · View at Scopus
  47. P. Sarraf, E. Mueller, W. M. Smith et al., “Loss-of-function mutations in PPARγ associated with human colon cancer,” Molecular Cell, vol. 3, no. 6, pp. 799–804, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. H. Sato, S. Ishihara, K. Kawashima et al., “Expression of peroxisome proliferator-activated receptor (PPAR)γ in gastric cancer and inhibitory effects of PPARγ agonists,” British Journal of Cancer, vol. 83, no. 10, pp. 1394–1400, 2000. View at Google Scholar · View at Scopus
  49. D. Shen, C. Deng, and M. Zhang, “Peroxisome proliferator-activated receptor γ agonists inhibit the proliferation and invasion of human colon cancer cells,” Postgraduate Medical Journal, vol. 83, no. 980, pp. 414–419, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Tsukahara and H. Haniu, “Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells,” Biochemical and Biophysical Research Communications, vol. 424, pp. 524–529, 2012. View at Google Scholar
  51. G. Lee, F. Elwood, J. McNally et al., “T0070907, a selective ligand for peroxisome proliferator-activated receptor γ, functions as an antagonist of biochemical and cellular activities,” Journal of Biological Chemistry, vol. 277, no. 22, pp. 19649–19657, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Tsukahara, “The role of PPARgamma in the transcriptional control by agonists and antagonists,” PPAR Research, vol. 2012, Article ID 362361, 2012. View at Google Scholar
  53. T. Tsukahara and K. Murakami-Murofushi, “Release of cyclic phosphatidic acid from gelatin-based hydrogels inhibit colon cancer cell growth and migration,” Scientific Reports, vol. 2, p. 687, 2012. View at Google Scholar
  54. M. Krotkiewski, P. Bjorntorp, L. Sjostrom, and U. Smith, “Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution,” Journal of Clinical Investigation, vol. 72, no. 3, pp. 1150–1162, 1983. View at Google Scholar · View at Scopus
  55. P. Bjorntorp, “Abdominal obesity and the metabolic syndrome,” Annals of Medicine, vol. 24, no. 6, pp. 465–468, 1992. View at Google Scholar · View at Scopus
  56. H. Green and M. Meuth, “An established pre adipose cell line and its differentiation in culture,” Cell, vol. 3, no. 2, pp. 127–133, 1974. View at Google Scholar · View at Scopus
  57. T. Tsukahara, S. Hanazawa, and K. Murakami-Murofushi, “Cyclic phosphatidic acid influences the expression and regulation of cyclic nucleotide phosphodiesterase 3B and lipolysis in 3T3-L1 cells,” Biochemical and Biophysical Research Communications, vol. 404, no. 1, pp. 109–114, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Ostman, P. Arner, P. Engfeldt, and L. Kager, “Regional differences in the control of lipolysis in human adipose tissue,” Metabolism: Clinical and Experimental, vol. 28, no. 12, pp. 1198–1205, 1979. View at Google Scholar · View at Scopus
  59. G. Y. Carmen and S. M. Víctor, “Signalling mechanisms regulating lipolysis,” Cellular Signalling, vol. 18, no. 4, pp. 401–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. H. Jeon, Y. S. Heo, C. M. Kim et al., “Phosphodiesterase: overview of protein structures, potential therapeutic applications and recent progress in drug development,” Cellular and Molecular Life Sciences, vol. 62, no. 11, pp. 1198–1220, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. E. Degerman, F. Ahmad, Y. W. Chung et al., “From PDE3B to the regulation of energy homeostasis,” Current Opinion in Pharmacology, vol. 11, pp. 676–682, 2011. View at Google Scholar