Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2013, Article ID 675759, 6 pages
http://dx.doi.org/10.1155/2013/675759
Research Article

Antihyperlipidemic Effect of a Polyherbal Mixture in Streptozotocin-Induced Diabetic Rats

1Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
2Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
3Neyshabur University of Medical Sciences, Neyshabur 93186-14139, Iran

Received 8 June 2013; Revised 17 October 2013; Accepted 21 October 2013

Academic Editor: Angel Catalá

Copyright © 2013 Ahmad Ghorbani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Deshpande, M. Harris-Hayes, and M. Schootman, “Epidemiology of diabetes and diabetes-related complications,” Physical Therapy, vol. 88, no. 11, pp. 1254–1264, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Lorenzati, C. Zucco, S. Miglietta, F. Lamberti, and G. Bruno, “Oral hypoglycemic drugs: pathophysiological basis of their mechanism of action,” Pharmaceuticals, vol. 3, no. 9, pp. 3005–3020, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Tzoulaki, M. Molokhia, V. Curcin et al., “Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database,” British Medical Journal, vol. 339, p. b4731, 2009. View at Google Scholar · View at Scopus
  4. A. Ghorbani, “Best herbs for managing diabetes: a review of clinical studies,” Brazilian Journal of Pharmaceutical Sciences, vol. 49, no. 3, pp. 413–422, 2013. View at Publisher · View at Google Scholar
  5. A. Ghorbani, “Phytotherapy for diabetic dyslipidemia: evidence from clinical trials,” Clinical Lipidology, vol. 8, pp. 311–319, 2013. View at Google Scholar
  6. K. Divband, G. R. Komeyli, and F. Saeidinik, “Effects of walnut leaves aqueous extract on blood sugar and serum lipids in diabetic rats,” Journal of Birjand University of Medical Sciences, vol. 17, pp. 11–18, 2010. View at Google Scholar
  7. A. Eidi, M. Eidi, and E. Esmaeili, “Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats,” Phytomedicine, vol. 13, no. 9-10, pp. 624–629, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Eidi, M. Eidi, and R. Darzi, “Antidiabetic effect of Olea europaea l. in normal and diabetic rats,” Phytotherapy Research, vol. 23, no. 3, pp. 347–350, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Esmaillzadeh, F. Tahbaz, I. Gaieni, H. Alavi-Majd, and L. Azadbakht, “Cholesterol-lowering effect of concentrated pomegranate juice consumption in type II diabetic patients with hyperlipidemia,” International Journal for Vitamin and Nutrition Research, vol. 76, no. 3, pp. 147–151, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. H. F. Huseini, F. Darvishzadeh, R. Heshmat, Z. Jafariazar, M. Raza, and B. Larijani, “The clinical investigation of Citrullus colocynthis (L.) schrad fruit in treatment of type II diabetic patients: a randomized, double blind, placebo-controlled clinical trial,” Phytotherapy Research, vol. 23, no. 8, pp. 1186–1189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Golalipour and V. Khori, “The protective activity of Urtica dioica leaves on blood glucose concentration and β-cells in streptozotocin-diabetic rats,” Pakistan Journal of Biological Sciences, vol. 10, no. 8, pp. 1200–1204, 2007. View at Google Scholar · View at Scopus
  12. S. A. Hassan, R. Barthwal, M. S. Nair, and S. S. Haque, “Aqueous bark extract of Cinnamomum Zeylanicum: a potential therapeutic agent for streptozotocin-induced type 1 diabetes mellitus (T1DM) rats,” Tropical Journal of Pharmaceutical Research, vol. 13, pp. 429–435, 2012. View at Google Scholar
  13. H. Jemai, A. E. L. Feki, and S. Sayadi, “Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats,” Journal of Agricultural and Food Chemistry, vol. 57, no. 19, pp. 8798–8804, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Kaleem, D. Kirmani, M. Asif, Q. Ahmed, and B. Bano, “Biochemical effects of Nigella sativa L seeds in diabetic rats,” Indian Journal of Experimental Biology, vol. 44, no. 9, pp. 745–748, 2006. View at Google Scholar · View at Scopus
  15. M. R. Shahraki, M. R. Arab, E. Mirimokaddam, and M. J. Palan, “The effect of Teucrium polium (Calpoureh) on liver function, serum lipids and glucose in diabetic male rats,” Iranian Biomedical Journal, vol. 11, no. 1, pp. 65–68, 2007. View at Google Scholar · View at Scopus
  16. D. Puri, K. M. Prabhu, and P. S. Murthy, “Mechanism of action of a hypoglycemic principle isolated from fenugreek seeds,” Indian Journal of Physiology and Pharmacology, vol. 46, no. 4, pp. 457–462, 2002. View at Google Scholar · View at Scopus
  17. R. Shafiee-Nick, S. M. R. Parizadeh, N. Zokaei, and A. Ghorbani, “Effect of hydro-alcoholic extract of Vaccinium arctostaphylos on insulin release from rat-isolated langerhans islets,” Koomesh, vol. 12, pp. 447–452, 2011. View at Google Scholar
  18. R. Premanath, N. Lakshmidevi, K. Jayashree, and R. N. Suresh, “Evaluation of anti-diabetic effect of Trigonella foenum graecum Linn. Leaf extract in streptozotocin induced diabetic rats,” International Journal of Diabetes in Developing Countries, vol. 32, pp. 138–144, 2012. View at Google Scholar
  19. R. Shafiee-Nick, A. Ghorbani, F. Vafaee, and H. Rakhshandeh, “Chronic administration of a combination of six herbs inhibits the progression of hyperglycemia and decreases serum lipids and aspartate amino transferase activity in diabetic rats,” Advances in Pharmacological Sciences, vol. 2012, Article ID 789796, 6 pages, 2012. View at Publisher · View at Google Scholar
  20. A. Ghorbani, M. Varedi, M.-A.-R. Hadjzadeh, and G. H. Omrani, “Type-1 diabetes induces depot-specific alterations in adipocyte diameter and mass of adipose tissues in the rat,” Experimental and Clinical Endocrinology and Diabetes, vol. 118, no. 7, pp. 442–448, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Ghorbani, G. H. Omrani, M. R. Hadjzadeh, and M. Varedi, “Proinsulin C-peptide inhibits lipolysis in diabetic rat adipose tissue through phosphodiestrase-3B enzyme,” Hormone and Metabolic Research, vol. 45, no. 3, pp. 221–225, 2013. View at Google Scholar
  22. K. S. Shaughnessy, L. J. Gabor, K. T. Gottschall-Pass, and M. I. Sweeny, “Blueberry diets improve glucose tolerance and decrease oxidative stress in spontaneously hypertensive stroke-prone rats,” The FASEB Journal, vol. 22, pp. 702–705, 2008. View at Google Scholar
  23. S. Radhika, K. H. Smila, and R. Muthezhilan, “Antidiabetic and hypolipidemic activity of Punica granatum linn on alloxan induced rats,” World Journal of Medical Sciences, vol. 6, no. 4, pp. 178–182, 2011. View at Google Scholar · View at Scopus
  24. A. M. Gray and P. R. Flatt, “Insulin-releasing and insulin-like activity of the traditional anti-diabetic plant Coriandrum sativum (coriander),” British Journal of Nutrition, vol. 81, no. 3, pp. 203–209, 1999. View at Google Scholar · View at Scopus
  25. H. Hui, G. Tang, and V. L. W. Go, “Hypoglycemic herbs and their action mechanisms,” Chinese Medicine, vol. 4, article 11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. K. R. Shanmugasundaram, C. Panneerselvam, P. Samudram, and E. R. B. Shanmugasundaram, “The insulinotropic activity of Gymnema sylvestre, R.Br. an Indian medical herb used in controlling diabetes mellitus,” Pharmacological Research Communications, vol. 13, no. 5, pp. 475–486, 1981. View at Google Scholar · View at Scopus
  27. H.-L. Xue, Z. Zhang, W.-J. Wang, W.-H. Chen, and J. Ying, “Effects of Chinese herbal medicine Yiqi Zengmin formula on expression of glucose transporter 4 in skeletal muscle in type 2 diabetic rats,” Journal of Chinese Integrative Medicine, vol. 9, no. 10, pp. 1133–1137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. M. A. Hannan, L. Ali, B. Rokeya et al., “Soluble dietary fibre fraction of Trigonella foenum-graecum (fenugreek) seed improves glucose homeostasis in animal models of type 1 and type 2 diabetes by delaying carbohydrate digestion and absorption, and enhancing insulin action,” British Journal of Nutrition, vol. 97, no. 3, pp. 514–521, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Jelodar, M. Maleki, and S. Sirus, “Effect of walnut leaf, coriander and pomegranate on blood glucose and histopathology of pancreas of alloxan induced diabetic rats,” African Journal of Traditional, Complementary and Alternative Medicines, vol. 4, no. 3, pp. 299–305, 2007. View at Google Scholar · View at Scopus
  30. M. Vessal, F. Zal, and M. Vasei, “Effects of Teucrium polium on oral glucose tolerance test, regeneration of pancreatic islets and activity of hepatic glucokinase in diabetic rats,” Archives of Iranian Medicine, vol. 6, no. 1, pp. 35–39, 2003. View at Google Scholar · View at Scopus
  31. K. M. Fararh, Y. Atoji, Y. Shimizu, T. Shiina, H. Nikami, and T. Takewaki, “Mechanisms of the hypoglycaemic and immunopotentiating effects of Nigella sativa L. oil in streptozotocin-induced diabetic hamsters,” Research in Veterinary Science, vol. 77, no. 2, pp. 123–129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. C. F. Lima, M. F. Azevedo, R. Araujo, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention?” British Journal of Nutrition, vol. 96, no. 2, pp. 326–333, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. B. Farzami, D. Ahmadvand, S. Vardasbi, F. J. Majin, and S. Khaghani, “Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats,” Journal of Ethnopharmacology, vol. 89, no. 1, pp. 47–53, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Nmila, R. Gross, H. Rchid et al., “Insulinotropic effect of Citrullus colocynthis fruit extracts,” Planta Medica, vol. 66, no. 5, pp. 418–423, 2000. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Pournourmohammadi, F. Sharififar, E. Talebiyan, M. Khayatian, R. Sh, and A. H. Moslehi, “Effect of olive Leaf (Olea europaea L.) on glucose-stimulated insulin secretion from isolated pancreatic islets of rat,” Journal of Medicinal Plants, vol. 7, no. 28, pp. 38–149, 2008. View at Google Scholar · View at Scopus
  36. J. Patel, “Diabetes: managing dyslipidaemia,” Clinical Evidence, vol. 2008, article 0610, 2008. View at Google Scholar
  37. A. S. M. Moosa, M. U. Rashid, A. Z. S. Asadi, N. Ara, M. Uddin, and A. Ferdaus, “Hypolipidemic effects of fenugreek seed powder,” Bangladesh Journal of Pharmacologyl, vol. 1, pp. 64–67, 2006. View at Google Scholar
  38. A. Eidi and M. Eidi, “Antidiabetic effects of sage (Salvia officinalis L.) leaves in normal and streptozotocin-induced diabetic rats,” Diabetes and Metabolic Syndrome, vol. 3, no. 1, pp. 40–44, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Karimi, S. Abbasi, and A. R. Bateni, “The effect of Teucrium polium on blood glucose in diabetes mellitus type 2; a comparison with glibenclamide,” Iranian South Medical Journal, vol. 2, pp. 96–103, 2002. View at Google Scholar
  40. A. Ghorbani, M. R. Hadjzadeh, Z. Rajaei, and S. B. Zendehbad, “Effects of fenugreek seeds 6 on adipogenesis and lipolysis in normal and diabetic rat,” Pakistan Journal of Biological Sciences, vol. 17, no. 4, pp. 523–528, 2014. View at Publisher · View at Google Scholar
  41. R. K. Schindhelm, M. Diamant, J. M. Dekker, M. E. Tushuizen, T. Teerlink, and R. J. Heine, “Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease,” Diabetes/Metabolism Research and Reviews, vol. 22, no. 6, pp. 437–443, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. B. Vozarova, N. Stefan, R. S. Lindsay et al., “High alanine aminotransferase is associated with decreased hepatic insulin sensitivity and predicts the development of type 2 diabetes,” Diabetes, vol. 51, no. 6, pp. 1889–1895, 2002. View at Google Scholar · View at Scopus
  43. H. Madani, P. Rahimi, and P. Mahzoni, “Effects of hydroalcoholic extract of Juglans regia leaves on activity of AST and ALT enzymes in alloxan- induced diabetic rats,” Pharmaceutical Sciences, vol. 15, no. 2, pp. 213–218, 2009. View at Google Scholar · View at Scopus
  44. S. Shtukmaster, P. Ljubuncic, and A. Bomzon, “The effect of an aqueous extract of Teucrium polium on glutathione homeostasis in vitro: a possible mechanism of its hepatoprotectant action,” Advances in Pharmacological Sciences, vol. 2010, Article ID 938324, 7 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Eidi, M. Eidi, and M. Sokhteh, “Effect of fenugreek (Trigonella foenum-graecum L) seeds on serum parameters in normal and streptozotocin-induced diabetic rats,” Nutrition Research, vol. 27, no. 11, pp. 728–733, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. K. H. Abu Sitta, M. S. Shomah, and A. S. Salhab, “Hepatotoxicity of Teucrium polium L tea: supporting evidence in mice models,” Australian Journal of Medical Herbalism, vol. 21, no. 4, pp. 106–110, 2009. View at Google Scholar · View at Scopus
  47. J. K. Aronson, Meyler's Side Effects of Herbal Medicines, Elsevier, Oxford, UK, 2009.