Table of Contents Author Guidelines Submit a Manuscript
Journal of Lipids
Volume 2015, Article ID 518654, 5 pages
Research Article

Elevated Phospholipid Transfer Protein in Subjects with Multiple Sclerosis

BVBiomed Ltd., Oregon Bioscience Incubator, 4640 SW Macadam Avenue No. 200, Portland, OR 97239, USA

Received 24 June 2015; Revised 17 July 2015; Accepted 30 July 2015

Academic Editor: Gerhard M. Kostner

Copyright © 2015 Roy A. Garvin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An anomaly in the plasma proteins of patients with multiple sclerosis detectable on SDS-PAGE has been reported. The molecular weight of the anomaly was the same as the phospholipid transfer protein. A metabolic protein was involved in lipid homeostasis and remodeling of the high density lipoproteins. We have identified the anomaly as the phospholipid transfer protein by western blot using antiphospholipid transfer antibodies. Activity assays showed that the phospholipid transfer activity was elevated in fasted plasma samples from subjects with MS compared to controls. Sequence analysis of the gene encoding the phospholipid transfer protein did not identify any mutations in the genetic structure, suggesting that the increase in activity was not due to structural changes in the protein, but may be due to one of the other proteins with which it forms active complexes. Altered phospholipid transfer activity is important because it could be implicated in the decreased lipid uptake and abnormal myelin lipids observed in multiple sclerosis. It has been shown that alteration in myelin lipid content is an epitope for autoimmunity. Therefore, lipid changes due to a defect in phospholipid transfer and/or uptake could potentially influence the course of the disease. Further research is needed to elucidate the role of the phospholipid transfer protein in subjects with multiple sclerosis.