Table of Contents Author Guidelines Submit a Manuscript
Journal of Marine Biology
Volume 2009, Article ID 275040, 9 pages
http://dx.doi.org/10.1155/2009/275040
Research Article

Trace Element Concentrations in Bearded Seals (Erignathus barbatus) Near Red Dog Mine Compared to Other Locations in Alaska

Alaska Department of Fish and Game, 1300 College Road, Fairbanks, AK 99701, USA

Received 17 August 2008; Revised 12 November 2008; Accepted 3 January 2009

Academic Editor: Tracy K. Collier

Copyright © 2009 Lori Quakenbush and John J. Citta. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Bard, “Global transport of anthropogenic contaminants and the consequences for the Arctic marine ecosystem,” Marine Pollution Bulletin, vol. 38, no. 5, pp. 356–379, 1999. View at Publisher · View at Google Scholar
  2. J. Ford and L. Hasselbach, “Heavy metals in mosses and soils on six transects along the Red Dog mine haul road Alaska,” Tech. Rep. NPS/AR/NRTR-2001/38, National Park Service, Denali Park, Alaska, USA, 2001. View at Google Scholar
  3. L. Hasselbach, J. Ver Hoef, J. Ford et al., “Spatial patterns of cadmium and lead deposition on and adjacent to National Park Service lands near Red Dog Mine,” Tech. Rep. NPS/AR/NRTR-2004-45, National Park Service, Denali Park, Alaska, USA, 2004. View at Google Scholar
  4. Department of Environmental Conservation, Teck Cominco, and Exponent, “Draft 2001 Fugitive Dust Report. DeLong Mountain Regional Transportation System, Alaska. Unpublished report. Prepared for Teck Cominco Alaska Inc. Document No. 8601997.001 0501 0102 SS25,” Exponent, 15375 30th Place, Suite 250, Bellevue, Wash 98007, USA, 2002, http://www.dec.state.ak.us/spar/csp/docs/reddog/bibliography.htm#2001.
  5. Department of Environmental Conservation, “Comments on the Draft DMTS Fugitive Dust Risk Assessment,” Alaska Department of Environmental Conservation, Contaminated Sites Program, September 2005, http://www.dec.state.ak.us/spar/csp/sites/reddog.htm.
  6. Ecology and Environment, Inc., “Wild foods investigation public review draft report Northwest Alaska,” Report prepared for the Alaska Department of Environmental Conservation, Division of Air and Water Quality, 2002, http://www.dec.state.ak.us/spar/csp/docs/reddog/bibliography.htm#2001.
  7. Exponent, “DMTS Fugitive Dust Risk Assessment Volume I—Report,” Prepared for Teck Cominco Alaska Inc. Document No. 8601997.001 4400 0205 SS14. , Exponent, 15375 30th Place, Suite 250, Bellevue, Wash 98007, USA, 2005, http://www.dec.state.ak.us/spar/csp/docs/reddog/01dmts_ra_summ4_05.pdf.
  8. T. M. O'Hara, J. C. George, J. Blake et al., “Investigation of heavy metals in a large mortality event in caribou of northern Alaska,” Arctic, vol. 56, no. 2, pp. 125–135, 2003. View at Google Scholar
  9. Dames & Moore, L. A. Peterson, S. R. Braund, T. J. Gallagher, and E. Hall, “Environmental Baseline Studies, Red Dog Project,” January 1983, Cominco Alaska Inc., Anchorage, Alaska, USA. View at Google Scholar
  10. Public Meeting Notes, “Red Dog Mine Draft Risk Assessment Meeting with Subsistence Committee,” April 2005, http://www.dec.state.ak.us/spar/csp/sites/reddog.htm. View at Google Scholar
  11. Public Meeting Notes, “Red Dog Mine Draft Risk Assessment Meeting with Kivalina Residents,” April 2005, http://www.dec.state.ak.us/spar/csp/sites/reddog.htm. View at Google Scholar
  12. M. L. Johnson, C. H. Fiscus, B. T. Ostenson, and M. L. Barbour, “Marine mammals,” in Environment of the Cape Thompson Region, N. J. Wilimovsky and J. N. Wolfe, Eds., pp. 897–924, U.S. Atomic Energy Commission, Oak Ridge, Tenn, USA, 1966. View at Google Scholar
  13. P. R. Becker, E. A. Mackey, M. M. Schantz et al., “Concentrations of chlorinated hydrocarbons, heavy metals and other elements in tissues banked by the Alaska Marine Mammal Tissue Archival Project,” U.S. DOC, National Institute of Standards and Technology NISTIR 5620, 1995.
  14. E. A. Mackey, P. R. Becker, R. Demiralp, R. R. Greenberg, B. J. Koster, and S. A. Wise, “Bioaccumulation of vanadium and other trace metals in livers of Alaskan cetaceans and pinnipeds,” Archives of Environmental Contamination and Toxicology, vol. 30, no. 4, pp. 503–512, 1996. View at Publisher · View at Google Scholar
  15. R. E. A. Stewart, B. E. Stewart, I. Stirling, and E. Street, “Counts of growth layer groups in cementum and dentine in ringed seals (Phoca hispida),” Marine Mammal Science, vol. 12, no. 3, pp. 383–401, 1996. View at Publisher · View at Google Scholar
  16. I. A. McLaren, “Some aspects of growth and reproduction of the bearded seal, Erignathus barbatus (Erxleben),” Journal of the Fisheries Research Board of Canada, vol. 15, pp. 219–227, 1958. View at Google Scholar
  17. T. Benjaminsen, “Age determination and the growth and age distribution from cementum growth layers of bearded seals at Svalbard,” Fiskeridirektoratets Skrifter. Serie Havunders, vol. 16, pp. 159–170, 1973. View at Google Scholar
  18. R. Wagemann, “Comparison of heavy metals in two groups of ringed seals (Phoca hispida) from the Canadian Arctic,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 46, no. 9, pp. 1558–1563, 1989. View at Publisher · View at Google Scholar
  19. L.-A. Dehn, G. G. Sheffield, E. H. Follmann et al., “Trace elements in tissues of phocid seals harvested in the Alaskan and Canadian Arctic: influence of age and feeding ecology,” Canadian Journal of Zoology, vol. 83, no. 5, pp. 726–746, 2005. View at Publisher · View at Google Scholar
  20. J. H. Zar, Biostatistical Analysis, Prentice-Hall, Princeton, NJ, USA, 2nd edition, 1998.
  21. SAS Institute, “SAS/STAT Version 9.1,” SAS Institute Inc., Cary, NC, USA, 2004.
  22. P. Johansen, M. M. Hansen, G. Asmund, and P. B. Neilsen, “Marine organisms as indicators of heavy metal pollution—experience from 16 years of monitoring at a lead zinc mine in Greenland,” Chemistry and Ecology, vol. 5, no. 1-2, pp. 35–55, 1991. View at Publisher · View at Google Scholar
  23. T. S. Larsen, J. A. Kristensen, G. Asmund, and P. Bjerregaard, “Lead and zinc in sediments and biota from Maarmorilik, West Greenland: an assessment of the environmental impact of mining wastes on an Arctic fjord system,” Environmental Pollution, vol. 114, no. 2, pp. 275–283, 2001. View at Publisher · View at Google Scholar
  24. B. Fallis, “Trace metals in sediments and biota from Strathcons Sound, NWT; Nanisivik marine monitoring program, 1974–1979,” Tech. Rep. 1082, Fisheries and Aquatic Sciences, Winnipeg, Manitoba, Canada, 1982. View at Google Scholar
  25. P. Bustamante, C. Garrigue, L. Breau et al., “Trace elements in two odontocete species (Kogia briviceps and Globicephala macrohynchus) stranded in New Caledonia (South Pacific),” Environmental Pollution, vol. 124, no. 2, pp. 263–271, 2003. View at Publisher · View at Google Scholar
  26. M. F. Cameron, K. Frost, M. A. Simpkins, L. L. Lowry, J. A. Schaeffer, and A. Whiting, “Diving behavior, habitat use, and movements of bearded seal (Erignathus barbatus) pups in the Bering and Chukchi Seas,” in Proceedings of the Alaska Marine Science Symposium, Anchorage, Alaska, USA, January 2007.
  27. J. M. Azcue and J. O. Nriagu, “Arsenic: historical perspectives,” in Arsenic in the Environment, Part 1: Cycling and Characterization, J. O. Jriagu, Ed., pp. 1–15, John Wiley & Sons, New York, NY, USA, 1994. View at Google Scholar
  28. T. P. Brabets, “Occurrence and distribution of trace elements in snow, streams, and streambed sediments, Cape Krusenstern National Monuments, Alaska, 2002-2003,” Scientific Investigation Report 2004-5229, United States Geological Survey, Reston, Va, USA, 2004. View at Google Scholar
  29. State of Alaska, “Public health evaluation of exposure of Kivalina and Noatak residents to heavy metals from Red Dog Mine,” Environmental Public Health Program, Section of Epidemiology, Alaska Division of Public Health. Anchorage, Alaska. pp 52, 2001.
  30. R. Kubota, T. Kunito, and S. Tanabe, “Arsenic accumulation in the liver tissue of marine mammals,” Environmental Pollution, vol. 115, no. 2, pp. 303–312, 2001. View at Publisher · View at Google Scholar
  31. W. Goessler, A. Rudorfer, E. A. Mackey, P. R. Becker, and K. J. Irgolic, “Determination of arsenic compounds in marine mammals with high-performance liquid chromatography and an inductively coupled plasma mass spectrometer as element-specific detector,” Applied Organometallic Chemistry, vol. 12, no. 7, pp. 491–501, 1998. View at Publisher · View at Google Scholar
  32. K.-I. Ebisuda, T. Kunito, R. Kubota, and S. Tanabe, “Arsenic concentrations and speciation in the tissues of ringed seals (Phoca hispida) from Pangnirtung, Canada,” Applied Organometallic Chemistry, vol. 16, no. 8, pp. 451–457, 2002. View at Publisher · View at Google Scholar
  33. T. Kunito, R. Kubota, J. Fujihara, T. Agusa, and S. Tanabe, “Arsenic in marine mammals, seabirds, and sea turtles,” in Reviews of Environmental Contamination and Toxicology, D. M. Whitacre, Ed., pp. 31–69, Springer, New York, NY, USA, 2008. View at Publisher · View at Google Scholar
  34. T. J. O'Shea, “Environmental contaminants and marine mammals,” in Biology of Marine Mammals, J. E. Reynolds III and S. A. Rokmmel, Eds., pp. 485–564, Smithsonian Institution Press, Washington, DC, USA, 1999. View at Google Scholar
  35. C. D. Thatcher, J. B. Meldrum, S. E. Wikse, and W. D. Whittier, “Arsenic toxicosis and suspected chromium toxicosis in a herd of cattle,” Journal of the American Veterinary Medical Association, vol. 187, no. 2, pp. 179–182, 1985. View at Google Scholar
  36. R. A. Ponce, G. M. Egeland, J. P. Middaugh, and P. D. Becker, “Twenty years of trace metal analyses of marine mammals: evaluation and summation of data from Alaska and other Arctic regions,” State of Alaska Epidemiology Bulletin, vol. 1, no. 3, pp. 1–15, 1997. View at Google Scholar
  37. M. C. Linder, Biochemistry of Copper, Plenum Press, New York, NY, USA, 1991.
  38. World Health Organization, “Background document for development of WHO guidelines for drinking-water quality,” WHO/SDE/WSH/03.04.88, 2004.
  39. T. G. Smith and F. A. J. Armstrong, “Mercury in seals, terrestrial carnivores, and principal food items of the Inuit, from Holman, N.W.T,” Journal of the Fisheries Research Board of Canada, vol. 32, no. 6, pp. 795–801, 1975. View at Google Scholar
  40. T. G. Smith and F. A. J. Armstrong, “Mercury and selenium in ringed and bearded seal tissues from Arctic Canada,” Arctic, vol. 31, no. 2, pp. 75–84, 1978. View at Google Scholar
  41. W. R. Galster, “Accumulation of mercury in Alaskan pinnipeds,” in Proceedings of the 22nd Alaska Science Conference, p. 76, College, Alaska, USA, August 1971.
  42. Northern Contaminants Program, “Canadian Arctic contaminants assessment report II: contaminant levels, trends, and effects in the biological environment,” Minister of Public Works and Government Service Canada, Ottawa, Canada, 2003.