Table of Contents Author Guidelines Submit a Manuscript
Journal of Marine Biology
Volume 2010, Article ID 563205, 9 pages
http://dx.doi.org/10.1155/2010/563205
Research Article

Hemolysin, Protease, and EPS Producing Pathogenic Aeromonas hydrophila Strain An4 Shows Antibacterial Activity against Marine Bacterial Fish Pathogens

Laboratory of Bacterial Genetics and Environmental Biotechnology, Department of Microbiology, Goa University, Taleigao Plateau, Goa, 403206, India

Received 9 June 2010; Revised 22 August 2010; Accepted 1 October 2010

Academic Editor: Pei-Yuan Qian

Copyright © 2010 Anju Pandey et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A pathogenic Aeromonas hydrophila strain An4 was isolated from marine catfish and characterized with reference to its proteolytic and hemolytic activity along with SDS-PAGE profile (sodium dodecyl sulphate-Polyacrylamide gel electrophoresis) of ECPs (extracellular proteins) showing hemolysin (approximately 50 kDa). Agar well diffusion assay using crude cell extract of the bacterial isolate clearly demonstrated antibacterial activity against indicator pathogenic bacteria, Staphylococcus arlettae strain An1, Acinetobacter sp. strain An2, Vibrio parahaemolyticus strain An3, and Alteromonas aurentia SE3 showing inhibitory zone >10 mm well comparable to common antibiotics. Further GC-MS analysis of crude cell extract revealed several metabolites, namely, phenolics, pyrrolo-pyrazines, pyrrolo-pyridine, and butylated hydroxytoluene (well-known antimicrobials). Characterization of EPS using FTIR indicated presence of several protein-related amine and amide groups along with peaks corresponding to carboxylic and phenyl rings which may be attributed to its virulent and antibacterial properties, respectively. Besides hemolysin, EPS, and protease, Aeromonas hydrophila strain An4 also produced several antibacterial metabolites.