Table of Contents Author Guidelines Submit a Manuscript
Journal of Marine Biology
Volume 2012, Article ID 382498, 5 pages
http://dx.doi.org/10.1155/2012/382498
Research Article

Raphides in the Uncalcified Siphonous Green Seaweed, Codium minus (Schmidt) P. C. Silva

Dauer Electron Microscopy Laboratory, Department of Biology, The University of Miami, P.O. Box 249118, Coral Gables, FL 33124, USA

Received 17 February 2012; Revised 12 April 2012; Accepted 16 April 2012

Academic Editor: Wen-Xiong Wang

Copyright © 2012 Jeffrey S. Prince. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. E. Hanley, B. B. Lamont, M. M. Fairbanks, and C. M. Rafferty, “Plant structural traits and their role in anti-herbivore defence,” Perspectives in Plant Ecology, Evolution and Systematics, vol. 8, no. 4, pp. 157–178, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Lev-Yadun and M. Halpern, “External and internal spines in plants insert pathogenic microorganisms into herbivore's tissue for defense,” in Microbial Ecology Research Trends, T. Van Dijk, Ed., pp. 155–168, Nova Science Pubs., Inc., New York, NY, USA, 2008. View at Google Scholar
  3. G. G. Coté, “Diversity and distribution of idioblasts producing calcium oxalate crystals in Dieffenbachia seguine (Araceae),” American Journal of Botany, vol. 96, no. 7, pp. 1245–1254, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Crowther, “Morphometric analysis of calcium oxalate raphides and assessment of their taxonomic value for archeological microfossils,” in Archeological Science Beneath the Microscope: Studies in Residue and Ancient DNÅ Analysis in Honor of Thomas H. Loy, H. Haslam, G. Robertson, A. Crowther, S. Nugent, and L. Kirkwood, Eds., pp. 102–210, Australian National University Press, Canberra, Australia, 2009. View at Google Scholar
  5. M. A. Webb, J. M. Cavaletto, N. C. Carpita, L. E. Lopez, and H. J. Arnott, “The intravacuolar organic matrix associated with calcium oxalate crystals in leaves of Vitis,” Plant Journal, vol. 7, no. 4, pp. 633–648, 1995. View at Google Scholar · View at Scopus
  6. C. J. Prychid, R. S. Jabaily, and P. J. Rudall, “Cellular ultrastructure and crystal development in Amorphophallus (Araceae),” Annals of Botany, vol. 101, no. 7, pp. 983–995, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. V. R. Franceschi and P. A. Nakata, “Calcium oxalate in plants: formation and function,” Annual Review of Plant Biology, vol. 56, pp. 41–71, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. V. R. Franceschi and H. T. Horner, “Calcium oxalate crystals in plants,” The Botanical Review, vol. 46, no. 4, pp. 361–427, 1980. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Esau, Plant Anatomy, John Wiley & Sons, New York, NY, USA, 1965.
  10. C. R. Metcalf and L. Chalk, Anatomy of Dicotyledons, Leaves, Stem, and Wood in Relation to Taxonomy with Notes on Economic Uses, vol. 1-2, Claredon Press, Oxford, UK, 1950.
  11. H. J. Arnott and M. A. Webb, “Twinned raphides of calcium oxalate in grape (Vitis): implications for crystal stability and function,” International Journal of Plant Sciences, vol. 161, no. 1, pp. 133–142, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Kingsbury, Poisonous Plants of the United States and Canada, Prentice-Hall Inc., Englewood Cliffs, NJ, USA, 1964.
  13. M. E. Hay, Q. E. Kappel, and W. Fenical, “Synergisms in plant defenses against herbivores: interactions of chemistry, calcification, and plant quality,” Ecology, vol. 75, no. 6, pp. 1714–1726, 1994. View at Google Scholar · View at Scopus
  14. D. Menzel, “Fine structure of vacuolar inclusions in the siphonous green alga Chlorodesmis fastigiata (Udoteaceae, Caulerpales) and their contribution to plug formation,” Phycologia, vol. 26, no. 2, pp. 205–221, 1987. View at Google Scholar
  15. C. M. Pueschel, “Calcium oxalate crystals in the red alga Antithamnion kylinii (Ceramiales): cytoplasmic and limited to indeterminate axes,” Protoplasma, vol. 189, no. 1-2, pp. 73–80, 1995. View at Google Scholar · View at Scopus
  16. C. M. Pueschel, “Calcium oxalate crystals in the green alga Spirogyra hatillensis (Zygnematales, Chlorophyta),” International Journal of Plant Sciences, vol. 162, no. 6, pp. 1337–1345, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Pueschel, “Calcium oxalate crystals in the green alga Spirogyra hatillensis (Zygnematales, Chlorophyta),” Journal of Phycology, vol. 32, s. 3, pp. 55–56, 2002. View at Google Scholar · View at Scopus
  18. C. M. Pueschel and J. A. West, “Effects of ambient calcium concentration on the deposition of calcium oxalate crystals in Antithamnion (Ceramiales, Rhodophyta),” Phycologia, vol. 46, no. 4, pp. 371–379, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. E. I. Friedmann, W. C. Roth, J. B. Turner, and R. S. Mcewen, “Calcium oxalate crystals in the aragonite-producing green alga Penicillus and related genera,” Science, vol. 177, no. 4052, pp. 891–893, 1972. View at Google Scholar · View at Scopus
  20. J. B. Turner and E. I. Friedmann, “Fine structure of capitular filaments in the coenocytic green alga Penicillus,” Journal of Phycology, vol. 10, no. 2, pp. 125–134, 1974. View at Google Scholar
  21. L. Bohm and D. Futterer, “Algal calcification in some Codiaceae (Chlorophyta): ultrastructure and location of skeletal deposits,” Journal of Phycology, vol. 14, no. 4, pp. 486–493, 1978. View at Google Scholar
  22. T. Yasue, “Histochemical identification of calcium oxalate,” Acta Histochemistry and Cytochemistry, vol. 2, no. 3, pp. 83–95, 1969. View at Google Scholar
  23. R. E. Lee, Phycology, Cambridge University Press, New York, NY, USA, 1980.
  24. C. J. Dawes, “A study of the ultrastructure of a green alga, Apjohnia laetevirens Harvey with emphasis on the cell wall structure,” Phycologia, vol. 8, no. 2, pp. 77–84, 1969. View at Google Scholar
  25. F. Leliaert and E. Coppejans, “Crystalline cell inclusions: a new diagnostic character in the Cladophorophyceae (Chlorophyta),” Phycologia, vol. 43, no. 2, pp. 189–203, 2004. View at Google Scholar · View at Scopus
  26. C. M. Pueschel and J. A. West, “Cellular localization of calcium oxalate crystals in Chaetomorpha coliformis (Cladophorales; Chlorophyta): evidence of vacuolar differentiation,” Phycologia, vol. 50, no. 4, pp. 430–435, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. W. S. Sakai, S. S. Shiroma, and M. A. Nagao, “Study of Raphide Microstructure in Relation to Irritation,” Scanning Electron Microscopy, pt. 2, pp. 979–986, 1984. View at Google Scholar · View at Scopus
  28. J. S. Prince and W. G. Leblanc, “Comparative feeding preference of Strongylocentrotus droebachinesis (Echinoidea) for the invasive green seaweed Codium fragile ssp. tomemtosoides (Chlorophyceae) and four other seaweeds,” Marine Biology, vol. 113, no. 1, pp. 159–163, 1992. View at Google Scholar