Table of Contents Author Guidelines Submit a Manuscript
Journal of Marine Biology
Volume 2013, Article ID 921067, 9 pages
http://dx.doi.org/10.1155/2013/921067
Research Article

Screening of Genes Specifically Expressed in Males of Fenneropenaeus chinensis and Their Potential as Sex Markers

1Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received 10 May 2013; Revised 22 July 2013; Accepted 30 July 2013

Academic Editor: Katsutoshi Arai

Copyright © 2013 Shihao Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. G. Hartnoll, “Growth,” in The Biology of Crustacea, D. E. Bliss, Ed., pp. 111–197, 1982. View at Google Scholar
  2. C. L. Browdy, “Recent developments in penaeid broodstock and seed production technologies: improving the outlook for superior captive stocks,” Aquaculture, vol. 164, no. 1–4, pp. 3–21, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sagi and E. D. Aflalo, “The androgenic gland and monosex culture of freshwater prawn Macrobrachium rosenbergii (De Man): a biotechnological perspective,” Aquaculture Research, vol. 36, no. 3, pp. 231–237, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. Khamnamtong, S. Thumrungtanakit, S. Klinbunga, T. Aoki, I. Hirono, and P. Menasveta, “Identification of sex-specific expression markers in the giant tiger shrimp (Penaeus monodon),” Journal of Biochemistry and Molecular Biology, vol. 39, no. 1, pp. 37–45, 2006. View at Google Scholar · View at Scopus
  5. J. A. H. Benzie, M. Kenway, and E. Ballment, “Growth of Penaeus monodon × Penaeus esculentus tiger prawn hybrids relative to the parental species,” Aquaculture, vol. 193, no. 3-4, pp. 227–237, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. T. Li, K. Byrne, E. Miggiano et al., “Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers,” Aquaculture, vol. 219, no. 1–4, pp. 143–156, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. L. S. Zhang, C. J. Yang, Y. Zhang et al., “A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates,” Genetica, vol. 131, no. 1, pp. 37–49, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Sellars, F. Coman, B. Norris, and N. Preston, “Relative survival and growth rates of triploid and diploid female Penaeus japonicus,” in World Aquaculture Society Book of Abstracts, p. 713, 2003.
  9. M. Sellars, F. Coman, and N. Preston, “Protecting genetically improved shrimp via induced sterility,” in Australasian Aquaculture Book of Abstracts, p. 265, 2004.
  10. F. H. Li, J. H. Xiang, X. J. Zhang, L. H. Zhou, C. S. Zhang, and C. G. Wu, “Gonad development characteristics and sex ratio in triploid Chinese shrimp (Fenneropenaeus chinensis),” Marine Biotechnology, vol. 5, no. 6, pp. 528–535, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. M. J. Sellars, A. T. Wood, T. J. Dixon, L. M. Dierens, and G. J. Coman, “A comparison of heterozygosity, sex ratio and production traits in two classes of triploid Penaeus (Marsupenaeus) japonicus (Kuruma shrimp): polar body I versus II triploids,” Aquaculture, vol. 296, no. 3-4, pp. 207–212, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. S. Xie, F. H. Li, C. S. Zhang, K. J. Yu, and J. H. Xiang, “Synaptonemal complex analysis in spermatocytes of diploid and triploid Chinese shrimp Fenneropenaeus chinensis,” Tissue and Cell, vol. 40, no. 5, pp. 343–350, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. S. H. Li, F. H. Li, R. Wen, and J. H. Xiang, “Identification and characterization of the sex-determiner transformer-2 homologue in Chinese shrimp, Fenneropenaeus chinensis,” Sexual Development, vol. 6, pp. 267–278, 2012. View at Publisher · View at Google Scholar
  14. B. Wang, Y. J. Fan, X. J. Zhang, F. H. Li, and J. H. Xiang, “The preliminary study on the sexual related dna fragment in Chinese shrimp,” High Technology Letters, vol. 13, pp. 82–86, 2003. View at Google Scholar
  15. R. Preechaphol, R. Leelatanawit, K. Sittikankeaw et al., “Expressed sequence tag analysis for identification and characterization of sex-related genes in the giant tiger shrimp Penaeus monodon,” Journal of Biochemistry and Molecular Biology, vol. 40, no. 4, pp. 501–510, 2007. View at Google Scholar · View at Scopus
  16. R. Leelatanawit, K. Sittikankeaw, P. Yocawibun et al., “Identification, characterization and expression of sex-related genes in testes of the giant tiger shrimp Penaeus monodon,” Comparative Biochemistry and Physiology A, vol. 152, no. 1, pp. 66–76, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. T. R. Callaghan, B. M. Degnan, and M. J. Sellars, “Expression of sex and reproduction-related genes in Marsupenaeus japonicus,” Marine Biotechnology, vol. 12, no. 6, pp. 664–677, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Staelens, D. Rombaut, I. Vercauteren, B. Argue, J. Benzie, and M. Vuylsteke, “High-density linkage maps and sex-linked markers for the black tiger shrimp (Penaeus monodon),” Genetics, vol. 179, no. 2, pp. 917–925, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Z. X. Cui, H. Liu, T. S. Lo, and K. H. Chu, “Inhibitory effects of the androgenic gland on ovarian development in the mud crab Scylla paramamosain,” Comparative Biochemistry and Physiology A, vol. 140, no. 3, pp. 343–348, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. R. J. Fowler and B. V. Leonard, “The structure and function of the androgenic gland in Cherax destructor (Decapoda: Parastacidae),” Aquaculture, vol. 171, no. 1-2, pp. 135–148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Sagi and I. Khalaila, “The crustacean androgen: a hormone in an isopod and androgenic activity in decapods',” The American Zoologist, vol. 41, no. 3, pp. 477–484, 2001. View at Google Scholar · View at Scopus
  22. A. Sagi, R. Manor, C. Segall, C. Davis, and I. Khalaila, “On intersexuality in the crayfish Cherax quadricarinatus: an inducible sexual plasticity model,” Invertebrate Reproduction and Development, vol. 41, no. 1–3, pp. 27–33, 2002. View at Google Scholar · View at Scopus
  23. A. Sagi, E. Snir, and I. Khalaila, “Sexual differentiation in decapod crustaceans: role of the androgenic gland,” Invertebrate Reproduction and Development, vol. 31, no. 1–3, pp. 55–61, 1997. View at Google Scholar · View at Scopus
  24. S. Suzuki, “Androgenic gland hormone is a sex-reversing factor but cannot be a sex-determining factor in the female crustacean isopods Armadillidium vulgare,” General and Comparative Endocrinology, vol. 115, no. 3, pp. 370–378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  25. F. H. Li and J. H. Xiang, “Preliminary studies on form, structure and function of androgenic gland in Penaeus chinensis,” Chinese Science Bulletin, vol. 42, no. 6, pp. 499–503, 1997. View at Google Scholar · View at Scopus
  26. R. Campos-Ramos, R. Garza-Torres, D. A. Guerrero-Tortolero, A. M. Maeda-Martínez, and H. Obregón-Barboza, “Environmental sex determination, external sex differentiation and structure of the androgenic gland in the Pacific white shrimp Litopenaeus vannamei (Boone),” Aquaculture Research, vol. 37, no. 15, pp. 1583–1593, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Diatchenko, S. Lukyanov, Y. F. C. Lau, and P. D. Siebert, “Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes,” Methods in Enzymology, vol. 303, pp. 349–380, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. J. X. Cao, G. L. Yin, and W. J. Yang, “Identification of a novel male reproduction-related gene and its regulated expression patterns in the prawn, Macrobrachium rosenbergii,” Peptides, vol. 27, no. 4, pp. 728–735, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Manor, S. Weil, S. Oren et al., “Insulin and gender: an insulin-like gene expressed exclusively in the androgenic gland of the male crayfish,” General and Comparative Endocrinology, vol. 150, no. 2, pp. 326–336, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ventura, R. Manor, E. D. Aflalo et al., “Temporal silencing of an androgenic gland-specific insulin-like gene affecting phenotypical gender differences and spermatogenesis,” Endocrinology, vol. 150, no. 3, pp. 1278–1286, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. H. Li, F. H. Li, B. Wang, Y. S. Xie, R. Wen, and J. H. Xiang, “Cloning and expression profiles of two isoforms of a CHH-like gene specifically expressed in male Chinese shrimp, Fenneropenaeus chinensis,” General and Comparative Endocrinology, vol. 167, no. 2, pp. 308–316, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Keller, “Crustacean neuropeptides: structures, functions and comparative aspects,” Experientia, vol. 48, no. 5, pp. 439–448, 1992. View at Publisher · View at Google Scholar · View at Scopus
  33. M. L. Fanjul-Moles, “Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update,” Comparative Biochemistry and Physiology C, vol. 142, no. 3-4, pp. 390–400, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. D. P. V. de Kleijn and F. van Herp, “Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapod crustaceans,” Invertebrate Reproduction and Development, vol. 33, no. 2-3, pp. 263–272, 1998. View at Google Scholar · View at Scopus
  35. L. Serrano, G. Blanvillain, D. Soyez et al., “Putative involvement of crustacean hyperglycemic hormone isoforms in the neuroendocrine mediation of osmoregulation in the crayfish Astacus leptodactylus,” Journal of Experimental Biology, vol. 206, no. 6, pp. 979–988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. S. Chung, H. Dircksen, and S. G. Webster, “A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 23, pp. 13103–13107, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. L. D. Rhodes and J. van Rebecca, “Isolation of the cDNA and characterization of mRNA expression of ribosomal protein S19 from the soft-shell clam, Mya arenaria,” Gene, vol. 197, no. 1-2, pp. 295–304, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. Z. P. Zhang, Y. L. Wang, Y. H. Jiang, P. Lin, X. W. Jia, and Z. H. Zou, “Ribosomal protein L24 is differentially expressed in ovary and testis of the marine shrimp Marsupenaeus japonicus,” Comparative Biochemistry and Physiology B, vol. 147, no. 3, pp. 466–474, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Thomas, “An encore for ribosome biogenesis in the control of cell proliferation,” Nature Cell Biology, vol. 2, no. 5, pp. E71–E72, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Lee and T. Schedl, “RNA-binding proteins,” WormBook, pp. 1–13, 2006. View at Google Scholar · View at Scopus
  41. A. Zhou, A. C. Ou, A. Cho, E. J. Benz Jr., and S. C. Huang, “Novel splicing factor RBM25 modulates Bcl-x Pre-mRNA 5′ splice site selection,” Molecular and Cellular Biology, vol. 28, no. 19, pp. 5924–5936, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. J. L. Qi, S. H. Su, M. E. McGuffin, and W. Mattox, “Concentration dependent selection of targets by an SR splicing regulator results in tissue-specific RNA processing,” Nucleic Acids Research, vol. 34, no. 21, pp. 6256–6263, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Xie, F. Li, B. Wang et al., “Screening of genes related to ovary development in Chinese shrimp Fenneropenaeus chinensis by suppression subtractive hybridization,” Comparative Biochemistry and Physiology D, vol. 5, no. 2, pp. 98–104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. F. H. Li, Studies on key aspects of sexual differentiation and gonad development in prawns [Ph.D. thesis], 1999.
  45. K. Nakamura, N. Matsuzaki, and K. I. Yonekura, “Organogenesis of genital organs and androgenic gland in the kuruma prawn,” Nippon Suisan Gakkaishi, vol. 58, no. 12, pp. 2261–2267, 1992. View at Publisher · View at Google Scholar
  46. A. Sagi, Z. Ra'anan, D. Cohen, and Y. Wax, “Production of Macrobrachium rosenbergii in monosex populations: yield characteristics under intensive monoculture conditions in cages,” Aquaculture, vol. 51, no. 3-4, pp. 265–275, 1986. View at Google Scholar · View at Scopus