Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012 (2012), Article ID 215876, 17 pages
http://dx.doi.org/10.1155/2012/215876
Review Article

Dioxaphosphorinane-Constrained Nucleic Acid Dinucleotides as Tools for Structural Tuning of Nucleic Acids

1Laboratoire de Synthèse et Physicochimie de Molécules d'Intérêt Biologique, CNRS UMR 5068, Université Paul Sabatier, 31062 Toulouse, France
2Université de Toulouse, INSA, UPS, INP, LISBP, 135 Avenue de Rangueil, 31077 Toulouse, France
3INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, 31400 Toulouse, France

Received 1 June 2012; Accepted 2 August 2012

Academic Editor: Eriks Rozners

Copyright © 2012 Dan-Andrei Catana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Belmont, J. F. Constant, and M. Demeunynck, “Nucleic acid conformation diversity: from structure to function and regulation,” Chemical Society Reviews, vol. 30, no. 1, pp. 70–81, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. A. A. Antson, “Single stranded RNA binding proteins,” Current Opinion in Structural Biology, vol. 10, no. 1, pp. 87–94, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Ennifar, M. Yusupov, P. Walter et al., “The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges,” Structure, vol. 7, no. 11, pp. 1439–1449, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Tereshko, S. T. Wallace, N. Usman, F. E. Wincott, and M. Egli, “X-ray crystallographic observation of “in-line” and “adjacent” conformations in a bulged self-cleaving RNA/DNA hybrid,” RNA, vol. 7, no. 3, pp. 405–420, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. L.-W. Hung, E. L. Holbrook, and S. R. Holbrook, “The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 10, pp. 5107–5112, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. W. G. Scott, J. T. Finch, and A. Klug, “The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage,” Cell, vol. 81, no. 7, pp. 991–1002, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Ippolito and T. A. Steitz, “A 1.3-Å resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 17, pp. 9819–9824, 1998. View at Google Scholar · View at Scopus
  8. J. H. Cate, A. R. Gooding, E. Podell et al., “RNA tertiary structure mediation by adenosine platforms,” Science, vol. 273, no. 5282, pp. 1696–1699, 1996. View at Google Scholar · View at Scopus
  9. X.-J. Lu, Z. Shakked, and W. K. Olson, “A-form conformational motifs in ligand-bound DNA structures,” Journal of Molecular Biology, vol. 300, no. 4, pp. 819–840, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. W. K. Olson, A. A. Gorin, X.-J. Lu, L. M. Hock, and V. B. Zhurkin, “DNA sequence-dependent deformability deduced from protein-DNA crystal complexes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 19, pp. 11163–11168, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Várnai, D. Djuranovic, R. Lavery, and B. Hartmann, “α/γ transitions in the B-DNA backbone,” Nucleic Acids Research, vol. 30, no. 24, pp. 5398–5406, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Guo, D. N. Gopaul, and G. D. Van Duyne, “Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 13, pp. 7143–7148, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Lewis, G. Chang, N. C. Horton et al., “Crystal structure of the lactose operon repressor and its complexes with DNA and inducer,” Science, vol. 271, no. 5253, pp. 1247–1254, 1996. View at Publisher · View at Google Scholar
  14. L. Tora and H. Timmers, “The TATA box regulates TATA-binding protein (TBP) dynamics in vivo,” Trends in Biochemical Sciences, vol. 35, no. 6, pp. 309–314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. K. Furuita, S. Murata, J. G. Jee, S. Ichikawa, A. Matsuda, and C. Kojima, “Structural feature of bent DNA recognized by HMGB1,” Journal of the American Chemical Society, vol. 133, no. 15, pp. 5788–5790, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. A. J. A. Cobb, “Recent highlights in modified oligonucleotide chemistry,” Organic and Biomolecular Chemistry, vol. 5, no. 20, pp. 3260–3275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. N. M. Bell and J. Micklefield, “Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications,” ChemBioChem, vol. 10, no. 17, pp. 2691–2703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Zhou and J. Chattopadhyaya, “The synthesis of therapeutic locked nucleos(t)ides,” Current Opinion in Drug Discovery and Development, vol. 12, no. 6, pp. 876–898, 2009. View at Google Scholar · View at Scopus
  19. J. Lebreton, J.-M. Escudier, L. Arzel, and C. Len, “Synthesis of bicyclonucleosides having a C-C bridge,” Chemical Reviews, vol. 110, no. 6, pp. 3371–3418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Seio, T. Wada, K. Sakamoto, S. Yokoyama, and M. Sekine, “Chemical synthesis and properties of conformationally fixed diuridine monophosphates as building blocks of the RNA turn motif,” Journal of Organic Chemistry, vol. 63, no. 5, pp. 1429–1443, 1998. View at Google Scholar · View at Scopus
  21. K. Seio, T. Wada, K. Sakamoto, S. Yokoyama, and M. Sekine, “Chemical synthesis and conformational properties of a new cyclouridylic acid having an ethylene bridge between the uracil 5-position and 5-phosphate group,” Journal of Organic Chemistry, vol. 61, no. 4, pp. 1500–1504, 1996. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Sekine, O. Kurasawa, K.-I. Shohda, K. Seio, and T. Wada, “Synthesis and properties of oligonucleotides having a phosphorus chiral center by incorporation of conformationally rigid 5-cyclouridylic acid derivatives,” Journal of Organic Chemistry, vol. 65, no. 20, pp. 6515–6524, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Seio, T. Wada, and M. Sekine, “Synthesis and properties of oligothymidylates incorporating an artificial bend motif,” Helvetica Chimica Acta, vol. 83, no. 1, pp. 162–180, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. A. M. Sørensen and P. Nielsen, “Synthesis of conformationally restricted dinucleotides by ring-closing metathesis,” Organic Letters, vol. 2, no. 26, pp. 4217–4219, 2000. View at Google Scholar · View at Scopus
  25. A. M. Sørensen, K. E. Nielsen, B. Vogg, J. P. Jacobsen, and P. Nielsen, “Synthesis and NMR-studies of dinucleotides with conformationally restricted cyclic phosphotriester linkages,” Tetrahedron, vol. 57, no. 51, pp. 10191–10201, 2001. View at Publisher · View at Google Scholar · View at Scopus
  26. P. Børsting and P. Nielsen, “Tandem ring-closing metathesis and hydrogenation towards cyclic dinucleotides,” Chemical Communications, no. 18, pp. 2140–2141, 2002. View at Google Scholar · View at Scopus
  27. P. Børsting, A. M. Sørensen, and P. Nielsen, “A ring-closing metathesis strategy towards conformationally restricted di- and trinucleotides,” Synthesis, no. 6, pp. 797–801, 2002. View at Google Scholar · View at Scopus
  28. P. Bersting, K. E. Nielsen, and P. Nielsenl, “Stabilisation of a nucleic acid three-way junction by an oligonucleotide containing a single 2-C to 3-O-phosphate butylene linkage prepared by a tandem RCM-hydrogenation method,” Organic and Biomolecular Chemistry, vol. 3, no. 11, pp. 2183–2190, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Børsting, M. S. Christensen, S. I. Steffansen, and P. Nielsen, “Synthesis of dinucleotides with 2-C to phosphate connections by ring-closing metathesis,” Tetrahedron, vol. 62, no. 6, pp. 1139–1149, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Le Clézio, J.-M. Escudier, and A. Vigroux, “Diastereoselective synthesis of a conformationally restricted dinucleotide with predefined α and β torsional angles for the construction of α,β-constrained nucleic acids (α,β-CNA),” Organic Letters, vol. 5, no. 2, pp. 161–164, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Dupouy, I. Le Clézio, P. Lavedan, H. Gornitzka, J.-M. Escudier, and A. Vigroux, “Diastereoselective synthesis of conformationally restricted dinucleotides featuring canonical and noncanonical α/β torsion angle combinations (α,β-D-CNA),” European Journal of Organic Chemistry, no. 24, pp. 5515–5525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Mukaiyama, “Titanium tetrachloride in organic synthesis,” Angewandte Chemie—International Edition, vol. 16, no. 12, pp. 817–826, 1977. View at Google Scholar · View at Scopus
  33. C. Le Roux, H. Gaspard-Iloughmane, J. Dubac, J. Jaud, and P. Vignaux, “New effective catalysts for Mukaiyama-Aldol and -Michael reactions: BiCl3-metallic iodide systems,” Journal of Organic Chemistry, vol. 58, no. 7, pp. 1835–1839, 1993. View at Google Scholar · View at Scopus
  34. J.-M. Escudier, I. Tworkowski, L. Bouziani, and L. Gorrichon, “Synthèse stéréosélective de thymidine substituée en C-5,” Tetrahedron Letters, vol. 37, no. 27, pp. 4689–4692, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. K. E. Pfitzner and J. G. Moffatt, “Sulfoxide-carbodiimide reactions. I. A facile oxidation of alcohols,” Journal of the American Chemical Society, vol. 87, no. 24, pp. 5661–5670, 1965. View at Google Scholar · View at Scopus
  36. G. H. Jones, M. Taniguchi, D. Tegg, and J. G. Moffatt, “4-Substituted nucleosides. 5. Hydroxymethylation of nucleoside 5-aldehydes,” Journal of Organic Chemistry, vol. 44, no. 8, pp. 1309–1317, 1979. View at Google Scholar · View at Scopus
  37. V. Banuls and J.-M. Escudier, “Allylsilanes in the preparation of 5-C-hydroxy or bromo alkylthymidines,” Tetrahedron, vol. 55, no. 18, pp. 5831–5838, 1999. View at Publisher · View at Google Scholar · View at Scopus
  38. V. Banuls, J.-M. Escudier, C. Zedde, C. Claparols, B. Donnadieu, and H. Plaisancié, “Stereoselective synthesis of (5S)-5-C-(5-bromo-2-penten-1-yl)-2-deoxyribofuranosyl thymine, a new convertible nucleoside,” European Journal of Organic Chemistry, no. 24, pp. 4693–4700, 2001. View at Google Scholar · View at Scopus
  39. G. W. Kabalka, M. Varma, R. S. Varma, P. C. Srivastava, and F. F. Knapp, “Tosylation of alcohols,” Journal of Organic Chemistry, vol. 51, no. 12, pp. 2386–2388, 1986. View at Google Scholar · View at Scopus
  40. M. H. Caruthers, “Chemical synthesis of DNA and DNA analogues,” Accounts of Chemical Research, vol. 24, no. 9, pp. 278–284, 1991. View at Google Scholar · View at Scopus
  41. C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of dinucleotides featuring canonical and non-canonical A-type duplex α, β and δ torsion angle combinations (LNA/α,β-D-CNA),” European Journal of Organic Chemistry, no. 31, pp. 5256–5264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Le Clézio, A. Vigroux, and J.-M. Escudier, “Diastereoselective and regioselective synthesis of conformationally restricted thio-dioxa- and oxo-oxathiaphosphorinane dinucleotides featuring noncanonical α/β torsion angle combinations (α,β-CNAs),” European Journal of Organic Chemistry, no. 12, pp. 1935–1941, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Maturano, D.-A. Catana, P. Lavedan et al., “Synthesis and structural study of ribo-dioxaphosphorinane-constrained nucleic acid dinucleotides (ribo-α,β-D-CNA),” European Journal of Organic Chemistry, no. 4, pp. 721–730, 2012. View at Publisher · View at Google Scholar · View at Scopus
  44. D.-A. Catana, M. Maturano, C. Payrastre, P. Lavedan, N. Tarrat, and J.-M. Escudier, “Synthesis of phostone-constrained nucleic acid (P-CNA) dinucleotides through intramolecular Arbuzov's reaction,” European Journal of Organic Chemistry, no. 34, pp. 6857–6863, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Hosomi and H. Sakurai, “Syntheses of γ,δ-unsaturated alcohols from allylsilanes and carbonyl compounds in the presence of titanium tetrachloride,” Tetrahedron Letters, vol. 17, no. 16, pp. 1295–1298, 1976. View at Google Scholar · View at Scopus
  46. I. Le Clézio, H. Gornitzka, J.-M. Escudier, and A. Vigroux, “Constrained nucleic acids (CNA). Part 2. Synthesis of conformationally restricted dinucleotide units featuring noncanonical α/β/γ or δ/ε/ζ torsion angle combinations,” Journal of Organic Chemistry, vol. 70, no. 5, pp. 1620–1629, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. R. D. Youssefyeh, J. P. H. Verheyden, and J. G. Moffatt, “4′-Substituted nucleosides. 4. Synthesis of some 4′-hydroxymethyl nucleosides,” Journal of Organic Chemistry, vol. 44, no. 8, pp. 1301–1309, 1979. View at Google Scholar · View at Scopus
  48. S. S. Jones, B. Rayner, C. B. Reese, A. Ubasawa, and M. Ubasawa, “Synthesis of the 3-terminal decaribonucleoside nonaphosphate of yeast alanine transfer ribonucleic acid,” Tetrahedron, vol. 36, no. 20-21, pp. 3075–3085, 1980. View at Google Scholar · View at Scopus
  49. C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of dinucleotides with S-type sugar puckering and noncanonical ε and ζ torsion angle combination (ν2, ε,ζ-D-CNA),” European Journal of Organic Chemistry, no. 7, pp. 1285–1294, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. C. K. H. Tseng, V. E. Marquez, G. W. A. Milne et al., “A ring-enlarged oxetanocin A analogue as an inhibitor of HIV infectivity,” Journal of Medicinal Chemistry, vol. 34, no. 1, pp. 343–349, 1991. View at Google Scholar · View at Scopus
  51. H. Vorbrüggen, K. Krolikiewiecz, and B. Bennua, “Nucleoside syntheses, XXII1) Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts,” Chemische Berichte, vol. 114, no. 4, pp. 1234–1255, 1981. View at Google Scholar
  52. C. Dupouy, P. Lavedan, and J. M. Escudier, “Synthesis of spiro ε,ζ-D-CNA in xylo configuration featuring noncanonical δ/ε/ζ torsion angle combination,” Tetrahedron, vol. 63, no. 46, pp. 11235–11243, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. G. H. Hakimelahi, Z. A. Proba, and K. K. Ogilvie, “High yield selective 3′-silylation of ribonucleosides,” Tetrahedron Letters, vol. 22, no. 52, pp. 5243–5246, 1981. View at Google Scholar · View at Scopus
  54. D. B. Dess and J. C. Martin, “A useful 12-i-5 triacetoxyperiodinane (the dess-martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-i-5 species,” Journal of the American Chemical Society, vol. 113, no. 19, pp. 7277–7287, 1991. View at Google Scholar · View at Scopus
  55. R. A. Torres and T. C. Bruice, “The mechanism of phosphodiester hydrolysis: near in-line attack conformations in the hammerhead ribozyme,” Journal of the American Chemical Society, vol. 122, no. 5, pp. 781–791, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Lönnberg, “Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight,” Organic and Biomolecular Chemistry, vol. 9, no. 6, pp. 1687–1703, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. D. G. Gorenstein, R. Rowell, and J. Findlay, “Stereoelectronic effects in the reactions of epimeric 2-aryloxy-2-oxy-1,3,2-dioxaphosphorinanes and oxazaphosphorinanes,” Journal of the American Chemical Society, vol. 102, no. 15, pp. 5077–5081, 1980. View at Google Scholar · View at Scopus
  58. B. Schneider, S. Neidle, and H. M. Berman, “Conformations of the sugar-phosphate backbone in helical DNA crystal structures,” Biopolymers, vol. 42, no. 1, pp. 113–124, 1997. View at Google Scholar · View at Scopus
  59. C. Altona and M. Sundaralingam, “Gonformational analysis of the sugar ring in nucleosides and nucleotides. Improved method for the interpretation of proton magnetic resonance coupling constants,” Journal of the American Chemical Society, vol. 95, no. 7, pp. 2333–2344, 1973. View at Google Scholar · View at Scopus
  60. M. Ikehara, “2-substituted 2-deoxypurinenucleotides their conformation and properties,” HeteroCycles, vol. 21, no. 1, pp. 75–90, 1984. View at Publisher · View at Google Scholar
  61. D. J. Wood, K. K. Ogilvie, and F. E. Hruska, “Proton magnetic resonance studies of dinucleotide conformation in aqueous solution. 2-deoxythymidylyl-(3,5)-2-deoxy-3-thymidylate, d(TpTp),” Canadian Journal of Chemistry, vol. 53, no. 18, pp. 2781–2790, 1975. View at Google Scholar
  62. C. Dupouy, N. Iché-Tarrat, M. P. Durrieu, F. Rodriguez, J. M. Escudier, and A. Vigroux, “Watson-Crick base-pairing properties of nucleic acid analogues with stereocontrolled α and β torsion angles (α,β-D-CNAs),” Angewandte Chemie—International Edition, vol. 45, no. 22, pp. 3623–3627, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Dupouy, N. Iché-Tarrat, M. P. Durrieu, A. Vigroux, and J. M. Escudier, “α,β-D-CNA induced rigidity within oligonucleotides,” Organic and Biomolecular Chemistry, vol. 6, no. 16, pp. 2849–2851, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. A. Boissonnet, C. Dupouy, P. Millard, M. P. Durrieu, N. Tarrat, and J. M. Escudier, “α,β-D-CNA featuring canonical and noncanonical α/β torsional angles behaviours within oligonucleotides,” New Journal of Chemistry, vol. 35, no. 7, pp. 1528–1533, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Dupouy, P. Millard, A. Boissonnet, and J. M. Escudier, “α,β-D-CNA preorganization of unpaired loop moiety stabilizes DNA hairpin,” Chemical Communications, vol. 46, no. 28, pp. 5142–5144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. C. W. Hilbers, H. A. Heus, M. J. P. Van Dongen, and S. S. Wijmenga, “The hairpin elements of nucleic acid structure: DNA and RNA folding,” in Nucleic Acids and Molecular Biology, F. Eckstein and D. M. J. Lilley, Eds., vol. 8, p. 56, Springer, Berlin, Germany, 1994. View at Google Scholar
  67. I. Le Clézio, C. Dupouy, P. Lavedan, and J.-M. Escudier, “Synthesis and structure of an α,β-D-CNA featuring a noncanonical α/β torsion angle combination within a tetranucleotide,” European Journal of Organic Chemistry, no. 23, pp. 3894–3900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  68. Unpublished results.
  69. P. S. Miller, K. N. Fang, N. S. Kondo, and P. O. P. Ts'o, “Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates,” Journal of the American Chemical Society, vol. 93, no. 24, pp. 6657–6665, 1971. View at Google Scholar · View at Scopus
  70. C. Zhou, O. Plashkevych, and J. Chattopadhyaya, “Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides,” Journal of Organic Chemistry, vol. 74, no. 9, pp. 3248–3265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. J. Leumann, “DNA analogues: from supramolecular principles to biological properties,” Bioorganic and Medicinal Chemistry, vol. 10, no. 4, pp. 841–854, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. O. Martínez, V. Ecochard, S. Mahéo et al., “α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction,” PloS ONE, vol. 6, no. 10, Article ID e25510, 2011. View at Publisher · View at Google Scholar · View at Scopus