Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2012, Article ID 740982, 15 pages
http://dx.doi.org/10.1155/2012/740982
Review Article

Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku, Yokohama 223-8522, Japan

Received 1 June 2012; Revised 31 July 2012; Accepted 2 August 2012

Academic Editor: Hiroshi Murakami

Copyright © 2012 Teruhiko Matsubara. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Varki, “Biological roles of oligosaccharides: all of the theories are correct,” Glycobiology, vol. 3, no. 2, pp. 97–130, 1993. View at Google Scholar · View at Scopus
  2. K. Takahashi, K. Tanabe, M. Ohnuki et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell, vol. 131, no. 5, pp. 861–872, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Lis and N. Sharon, “Lectins: carbohydrate-specific proteins that mediate cellular recognition,” Chemical Reviews, vol. 98, no. 2, pp. 637–674, 1998. View at Google Scholar · View at Scopus
  4. W. I. Weis and K. Drickamer, “Structural basis of lectin-carbohydrate recognition,” Annual Review of Biochemistry, vol. 65, pp. 441–473, 1996. View at Google Scholar · View at Scopus
  5. G. A. Nores, R. D. Lardone, R. Comín, M. E. Alaniz, A. L. Moyano, and F. J. Irazoqui, “Anti-GM1 antibodies as a model of the immune response to self-glycans,” Biochimica et Biophysica Acta, vol. 1780, no. 3, pp. 538–545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. F. Slovin, S. J. Keding, and G. Ragupathi, “Carbohydrate vaccines as immunotherapy for cancer,” Immunology and Cell Biology, vol. 83, no. 4, pp. 418–428, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Kannagi and S. Hakomori, “A guide to monoclonal antibodies directed to glycotopes,” Advances in Experimental Medicine and Biology, vol. 491, pp. 587–630, 2001. View at Google Scholar · View at Scopus
  8. C.-H. Hsu, S.-C. Hung, C.-Y. Wu, and C.-H. Wong, “Toward automated oligosaccharide synthesis,” Angewandte Chemie, vol. 50, no. 50, pp. 11872–11923, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. T. J. Boltje, T. Buskas, and G. J. Boons, “Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research,” Nature Chemistry, vol. 1, no. 8, pp. 611–622, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. I. Nishimura, “Combinatorial syntheses of sugar derivatives,” Current Opinion in Chemical Biology, vol. 5, no. 3, pp. 325–335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Hancock, M. D. Vaughan, and S. G. Withers, “Engineering of glycosidases and glycosyltransferases,” Current Opinion in Chemical Biology, vol. 10, no. 5, pp. 509–519, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. A. M. Daines, B. A. Maltman, and S. L. Flitsch, “Synthesis and modifications of carbohydrates, using biotransformations,” Current Opinion in Chemical Biology, vol. 8, no. 2, pp. 106–113, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. J. K. Scott, D. Loganathan, R. B. Easley, X. Gong, and I. J. Goldstein, “A family of concanavalin A-binding peptides from a hexapeptide epitope library,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5398–5402, 1992. View at Publisher · View at Google Scholar · View at Scopus
  14. M. N. Fukuda, “Peptide-displaying phage technology in glycobiology,” Glycobiology, vol. 22, no. 3, pp. 318–325, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. F. C. Dudak, I. H. Boyaci, and B. P. Orner, “The discovery of small-molecule mimicking peptides through phage display,” Molecules, vol. 16, no. 1, pp. 774–789, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Cortese, F. Felici, G. Galfre, A. Luzzago, P. Monaci, and A. Nicosia, “Epitope discovery using peptide libraries displayed on phage,” Trends in Biotechnology, vol. 12, no. 7, pp. 262–267, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Matsubara, A. Onishi, T. Saito et al., “Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy,” Journal of Medicinal Chemistry, vol. 53, no. 11, pp. 4441–4449, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. N. K. Sauter, J. E. Hanson, G. D. Glick et al., “Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography,” Biochemistry, vol. 31, no. 40, pp. 9609–9621, 1992. View at Publisher · View at Google Scholar · View at Scopus
  19. F. X. Theillet, F. A. Saul, B. Vulliez-Le Normand et al., “Structural mimicry of O-antigen by a peptide revealed in a complex with an antibody raised against Shigella flexneri serotype 2a,” Journal of Molecular Biology, vol. 388, no. 4, pp. 839–850, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. G. P. Smith and V. A. Petrenko, “Phage display,” Chemical Reviews, vol. 97, no. 2, pp. 391–410, 1997. View at Google Scholar · View at Scopus
  21. G. P. Smith, “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface,” Science, vol. 228, no. 4705, pp. 1315–1317, 1985. View at Google Scholar · View at Scopus
  22. J. K. Scott and G. P. Smith, “Searching for peptide ligands with an epitope library,” Science, vol. 249, no. 4967, pp. 386–390, 1990. View at Google Scholar · View at Scopus
  23. B. Ru, J. Huang, P. Dai et al., “MimoDB: a new repository for mimotope data derived from phage display technology,” Molecules, vol. 15, no. 11, pp. 8279–8288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Huang, B. Ru, P. Zhu et al., “MimoDB 2.0: a mimotope database and beyond,” Nucleic Acids Research, vol. 40, no. D1, pp. D271–D277, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. K. R. Oldenburg, D. Loganathan, I. J. Goldstein, P. G. Schultz, and M. A. Gallop, “Peptide ligands for a sugar-binding protein isolated from a random peptide library,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 12, pp. 5393–5397, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. D. Jain, K. Kaur, B. Sundaravadivel, and D. M. Salunke, “Structural and functional consequences of peptide-carbohydrate mimicry: crystal structure of a carbohydrate-mimicking peptide bound to concanavalin A,” Journal of Biological Chemistry, vol. 275, no. 21, pp. 16098–16102, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. D. L. Kooyman, S. B. Mcclellan, W. Parker et al., “Identification and characterization of a galactosyl peptide mimetic. Implications for use in removing xenoreactive anti-a gal antibodies,” Transplantation, vol. 61, no. 6, pp. 851–855, 1996. View at Google Scholar · View at Scopus
  28. J. Zhan, Z. Xia, L. Xu, Z. Yan, and K. Wang, “A peptide mimetic of Gal-α1,3-Gal is able to block human natural antibodies,” Biochemical and Biophysical Research Communications, vol. 308, no. 1, pp. 19–22, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. C. L. Martens, S. E. Cwirla, R. Y. W. Lee et al., “Peptides which bind to E-selectin and block neutrophil adhesion,” Journal of Biological Chemistry, vol. 270, no. 36, pp. 21129–21136, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. M. N. Fukuda, C. Ohyama, K. Lowitz et al., “A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells,” Cancer Research, vol. 60, no. 2, pp. 450–456, 2000. View at Google Scholar · View at Scopus
  31. L. Yu, P. S. Yu, E. Yee Yen Mui et al., “Phage display screening against a set of targets to establish peptide-based sugar mimetics and molecular docking to predict binding site,” Bioorganic and Medicinal Chemistry, vol. 17, no. 13, pp. 4825–4832, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. L. L. Eggink and J. K. Hoober, “A biologically active peptide mimetic of N-acetylgalactosamine/galactose,” BMC Research Notes, vol. 2, article 23, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. Z. Xu, G. S. Qian, Q. Li, Q. J. Feng, G. M. Wu, and K. L. Li, “Screening of mimetic peptides for CD14 binding site with LBP and antiendotoxin activity of mimetic peptide in vivo and in vitro,” Inflammation Research, vol. 58, no. 1, pp. 45–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Hoess, U. Brinkmann, T. Handel, and I. Pastan, “Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3,” Gene, vol. 128, no. 1, pp. 43–49, 1993. View at Publisher · View at Google Scholar · View at Scopus
  35. Q. Lou and I. Pastan, “A Lewis(y) epitope mimicking peptide induces anti-Lewis(y) immune responses in rabbits and mice,” Journal of Peptide Research, vol. 53, no. 3, pp. 252–260, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Qiu, P. Luo, K. Wasmund, Z. Steplewski, and T. Kieber-Emmons, “Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines,” Hybridoma, vol. 18, no. 1, pp. 103–112, 1999. View at Google Scholar · View at Scopus
  37. N. Katagihallimath, A. Mehanna, D. Guseva, R. Kleene, and M. Schachner, “Identification and validation of a Lewisx glycomimetic peptide,” European Journal of Cell Biology, vol. 89, no. 1, pp. 77–86, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. B. M. Charalambous and I. M. Feavers, “Peptide mimics elicit antibody responses against the outer-membrane lipooligosaccharide of group B Neisseria meningitidis,” FEMS Microbiology Letters, vol. 191, no. 1, pp. 45–50, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. Y. Hou and X. X. Gu, “Development of peptide mimotopes of lipooligosaccharide from nontypeable Haemophilus influenzae as vaccine candidates,” Journal of Immunology, vol. 170, no. 8, pp. 4373–4379, 2003. View at Google Scholar · View at Scopus
  40. T. Jouault, C. Fradin, F. Dzierszinski et al., “Peptides that mimic Candida albicans-derived β-1,2-linked mannosides,” Glycobiology, vol. 11, no. 8, pp. 693–701, 2001. View at Google Scholar · View at Scopus
  41. M. Simon-Haldi, N. Mantei, J. Franke, H. Voshol, and M. Schachner, “Identification of a peptide mimic of the L2/HNK-1 carbohydrate epitope,” Journal of Neurochemistry, vol. 83, no. 6, pp. 1380–1388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Lang, J. Zhan, L. Xu, and Z. Yan, “Identification of peptide mimetics of xenoreactive α-Gal antigenic epitope by phage display,” Biochemical and Biophysical Research Communications, vol. 344, no. 1, pp. 214–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. A. G. Laman, A. O. Shepelyakovskaya, I. A. Berezin et al., “Identification of pentadecapeptide mimicking muramyl peptide,” Vaccine, vol. 25, no. 15, pp. 2900–2906, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Rojas, A. Pupo, M. Del Rosario Aleman, and N. Santiago Vispo, “Preferential selection of Cys-constrained peptides from a random phage-displayed library by anti-glucitollysine antibodies,” Journal of Peptide Science, vol. 14, no. 11, pp. 1216–1221, 2008. View at Publisher · View at Google Scholar · View at Scopus
  45. A. Menendez, D. A. Calarese, R. L. Stanfield et al., “A peptide inhibitor of HIV-1 neutralizing antibody 2G12 is not a structural mimic of the natural carbohydrate epitope on gp120,” FASEB Journal, vol. 22, no. 5, pp. 1380–1392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  46. T. Taki, D. Ishikawa, H. Hamasaki, and S. Handa, “Preparation of peptides which mimic glycosphingolipids by using phage peptide library and their modulation on β-galactosidase activity,” FEBS Letters, vol. 418, no. 1-2, pp. 219–223, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. D. Ishikawa, H. Kikkawa, K. Ogino, Y. Hirabayashi, N. Oku, and T. Taki, “GD1α-replica peptides functionally mimic GD1α, an adhesion molecule of metastatic tumor cells, and suppress the tumor metastasis,” FEBS Letters, vol. 441, no. 1, pp. 20–24, 1998. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Takikawa, H. Kikkawa, T. Asai et al., “Suppression of GD1α ganglioside-mediated tumor metastasis by liposomalized WHW-peptide,” FEBS Letters, vol. 466, no. 2-3, pp. 381–384, 2000. View at Publisher · View at Google Scholar · View at Scopus
  49. J. X. Qiu and D. M. Marcus, “Use of peptide ligands to analyze the fine specificity of antibodies against asialo GM1,” Journal of Neuroimmunology, vol. 100, no. 1-2, pp. 58–63, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. T. Kieber-Emmons, P. Luo, J. Qiu, T. Y. Chang, M. Blaszczyk-Thurin, and Z. Steplewski, “Vaccination with carbohydrate peptide mimotopes promotes anti-tumor responses,” Nature Biotechnology, vol. 17, no. 7, pp. 660–665, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Wondimu, T. Zhang, T. Kieber-Emmons et al., “Peptides mimicking GD2 ganglioside elicit cellular, humoral and tumor-protective immune responses in mice,” Cancer Immunology, Immunotherapy, vol. 57, no. 7, pp. 1079–1089, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. E. Förster-Waldl, A. B. Riemer, A. K. Dehof et al., “Isolation and structural analysis of peptide mimotopes for the disialoganglioside GD2, a neuroblastoma tumor antigen,” Molecular Immunology, vol. 42, no. 3, pp. 319–325, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. A. B. Riemer, E. Förster-Waldl, K. H. Brämswig et al., “Induction of IgG antibodies against the GD2 carbohydrate tumor antigen by vaccination with peptide mimotopes,” European Journal of Immunology, vol. 36, no. 5, pp. 1267–1274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Bleeke, S. Fest, N. Huebener et al., “Systematic amino acid substitutions improved efficiency of GD2-peptide mimotope vaccination against neuroblastoma,” European Journal of Cancer, vol. 45, no. 16, pp. 2915–2921, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. E. Bolesta, A. Kowalczyk, A. Wierzbicki et al., “DNA vaccine expressing the mimotope of GD2 ganglioside induces protective GD2 cross-reactive antibody responses,” Cancer Research, vol. 65, no. 8, pp. 3410–3418, 2005. View at Google Scholar · View at Scopus
  56. A. Wierzbicki, M. Gil, M. Ciesielski et al., “Immunization with a mimotope of GD2 ganglioside induces CD8+ T cells that recognize cell adhesion molecules on tumor cells,” Journal of Immunology, vol. 181, no. 9, pp. 6644–6653, 2008. View at Google Scholar · View at Scopus
  57. I. Horwacik, D. Czaplicki, K. Talarek et al., “Selection of novel peptide mimics of the GD2 ganglioside from a constrained phage-displayed peptide library,” International Journal of Molecular Medicine, vol. 19, no. 5, pp. 829–839, 2007. View at Google Scholar · View at Scopus
  58. I. Horwacik, M. Kurciński, M. Bzowska et al., “Analysis and optimization of interactions between peptides mimicking the GD2 ganglioside and the monoclonal antibody 14G2a,” International Journal of Molecular Medicine, vol. 28, no. 1, pp. 47–57, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. I. Popa, D. Ishikawa, M. Tanaka, K. Ogino, J. Portoukalian, and T. Taki, “GD3-replica peptides selected from a phage peptide library induce a GD3 ganglioside antibody response,” FEBS Letters, vol. 580, no. 5, pp. 1398–1404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Miura, A. Sakaki, M. Kamihira, S. Iijima, and K. Kobayashi, “A globotriaosylceramide (Gb3Cer) mimic peptide isolated from phage display library expressed strong neutralization to Shiga toxins,” Biochimica et Biophysica Acta, vol. 1760, no. 6, pp. 883–889, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. A. Perez, E. S. Mier, N. S. Vispo, A. M. Vazquez, and R. P. Rodríguez, “A monoclonal antibody against NeuGc-containing gangliosides contains a regulatory idiotope involved in the interaction with B and T cells,” Molecular Immunology, vol. 39, no. 1-2, pp. 103–112, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. A. López-Requena, C. M. De Acosta, E. Moreno et al., “Gangliosides, Ab1 and Ab2 antibodies. I. Towards a molecular dissection of an idiotype-anti-idiotype system,” Molecular Immunology, vol. 44, no. 4, pp. 423–433, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. J. H. Youn, H. J. Myung, A. Liav et al., “Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae,” FEMS Immunology and Medical Microbiology, vol. 41, no. 1, pp. 51–57, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. P. Valadon, G. Nussbaum, L. F. Boyd, D. H. Margulies, and M. D. Scharff, “Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans,” Journal of Molecular Biology, vol. 261, no. 1, pp. 11–22, 1996. View at Publisher · View at Google Scholar · View at Scopus
  65. A. C. M. Young, P. Valadon, A. Casadevall, M. D. Scharff, and J. C. Sacchettini, “The three-dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: implications for the identification of peptide mimotopes,” Journal of Molecular Biology, vol. 274, no. 4, pp. 622–634, 1997. View at Publisher · View at Google Scholar · View at Scopus
  66. D. O. Beenhouwer, R. J. May, P. Valadon, and M. D. Scharff, “High affinity mimotope of the polysaccharide capsule of Cryptococcus neoformans identified from an evolutionary phage peptide library,” Journal of Immunology, vol. 169, no. 12, pp. 6992–6999, 2002. View at Google Scholar · View at Scopus
  67. P. Valadon, G. Nussbaum, J. Oh, and M. D. Scharff, “Aspects of antigen mimicry revealed by immunization with a peptide mimetic of Cryptococcus neoformans polysaccharide,” Journal of Immunology, vol. 161, no. 4, pp. 1829–1836, 1998. View at Google Scholar · View at Scopus
  68. S. H. Pincus, M. J. Smith, H. J. Jennings, J. B. Burritt, and P. M. Glee, “Peptides that mimic the group B streptococcal type III capsular polysaccharide antigen,” Journal of Immunology, vol. 160, no. 1, pp. 293–298, 1998. View at Google Scholar · View at Scopus
  69. G. B. Lesinski, S. L. Smithson, N. Srivastava, D. Chen, G. Widera, and M. A. J. Westerink, “A DNA vaccine encoding a peptide mimic of Streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/c mice,” Vaccine, vol. 19, no. 13-14, pp. 1717–1726, 2001. View at Publisher · View at Google Scholar · View at Scopus
  70. U. K. Buchwald, A. Lees, M. Steinitz, and L. A. Pirofski, “A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice,” Infection and Immunity, vol. 73, no. 1, pp. 325–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. C. M. Smith, C. L. Passo, A. Scuderi et al., “Peptide mimics of two pneumococcal capsular polysaccharide serotypes (6B and 9V) protect mice from a lethal challenge with Streptococcus pneumoniae,” European Journal of Immunology, vol. 39, no. 6, pp. 1527–1535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. S. L. Harris, L. Craig, J. S. Mehroke et al., “Exploring the basis of peptide-carbohydrate crossreactivity: evidence for discrimination by peptides between closely related anti-carbohydrate antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 6, pp. 2454–2459, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Wu, Q. Zhang, D. Sales, A. E. Bianco, and A. Craig, “Vaccination with peptide mimotopes produces antibodies recognizing bacterial capsular polysaccharides,” Vaccine, vol. 28, no. 39, pp. 6425–6435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. M. C. Grothaus, N. Srivastava, S. L. Smithson et al., “Selection of an immunogenic peptide mimic of the capsular polysaccharide of Neisseria meningitidis serogroup A using a peptide display library,” Vaccine, vol. 18, no. 13, pp. 1253–1263, 2000. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Park, I. H. Choi, S. J. Kim, and J. S. Shin, “Peptide mimotopes of Neisseria meningitidis group B capsular polysaccharide,” Yonsei Medical Journal, vol. 45, no. 4, pp. 755–758, 2004. View at Google Scholar · View at Scopus
  76. V. Lauvrak, G. Berntzen, U. Heggelund et al., “Selection and characterization of cyclic peptides that bind to a monoclonal antibody against meningococcal L3,7,9 lipopolysaccharides,” Scandinavian Journal of Immunology, vol. 59, no. 4, pp. 373–384, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. P. Torregrossa, L. Buhl, M. Bancila et al., “Selection of poly-α 2,8-sialic acid mimotopes from a random phage peptide library and analysis of their bioactivity,” Journal of Biological Chemistry, vol. 279, no. 29, pp. 30707–30714, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. P. Marino, J. C. Norreel, M. Schachner, G. Rougon, and M. C. Amoureux, “A polysialic acid mimetic peptide promotes functional recovery in a mouse model of spinal cord injury,” Experimental Neurology, vol. 219, no. 1, pp. 163–174, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. C. Lo Passo, A. Romeo, I. Pernice et al., “Peptide mimics of the group B meningococcal capsule induce bactericidal and protective antibodies after immunization,” Journal of Immunology, vol. 178, no. 7, pp. 4417–4423, 2007. View at Google Scholar · View at Scopus
  80. T. Menéndez, N. F. Santiago-Vispo, Y. Cruz-Leal et al., “Identification and characterization of phage-displayed peptide mimetics of Neisseria meningitidis serogroup B capsular polysaccharide,” International Journal of Medical Microbiology, vol. 301, no. 1, pp. 16–25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  81. D. M. Prinz, S. L. Smithson, and M. A. J. Westerink, “Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C,” Journal of Immunological Methods, vol. 285, no. 1, pp. 1–14, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. G. R. Moe and D. M. Granoff, “Molecular mimetics of Neisseria meningitidis serogroup B polysaccharide,” International Reviews of Immunology, vol. 20, no. 2, pp. 201–220, 2001. View at Google Scholar · View at Scopus
  83. S. Falklind-Jerkérus, F. Felici, C. Cavalieri et al., “Peptides mimicking Vibrio cholerae O139 capsular polysaccharide elicit protective antibody response,” Microbes and Infection, vol. 7, no. 15, pp. 1453–1460, 2005. View at Publisher · View at Google Scholar · View at Scopus
  84. M. N. Dharmasena, D. A. Jewell, and R. K. Taylor, “Development of peptide mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and investigation of the structural basis of peptide mimicry,” Journal of Biological Chemistry, vol. 282, no. 46, pp. 33805–33816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  85. M. N. Dharmasena, S. J. Krebs, and R. K. Taylor, “Characterization of a novel protective monoclonal antibody that recognizes an epitope common to Vibrio cholerae Ogawa and Inaba serotypes,” Microbiology, vol. 155, no. 7, pp. 2353–2364, 2009. View at Publisher · View at Google Scholar · View at Scopus
  86. A. Phalipon, A. Folgori, J. Arondel et al., “Induction of anti-carbohydrate antibodies by phage library-selected peptide mimics,” European Journal of Immunology, vol. 27, no. 10, pp. 2620–2625, 1997. View at Publisher · View at Google Scholar · View at Scopus
  87. M. Geiser, D. Schultz, A. Le Cardinal, H. Voshol, and C. García-Echeverría, “Identification of the human melanoma-associated chondroitin sulfate proteoglycan antigen epitope recognized by the antitumor monoclonal antibody 763.74 from a peptide phage library,” Cancer Research, vol. 59, no. 4, pp. 905–910, 1999. View at Google Scholar · View at Scopus
  88. H. Melzer, P. Fortugno, E. Mansouri et al., “Antigenicity and immunogenicity of phage library-selected peptide mimics of the major surface proteophosphoglycan antigens of Entamoeba histolytica,” Parasite Immunology, vol. 24, no. 6, pp. 321–328, 2002. View at Publisher · View at Google Scholar · View at Scopus
  89. G. Gevorkian, E. Segura, G. Acero et al., “Peptide mimotopes of Mycobacterium tubercolosis carbohydrate immunodeterminants,” Biochemical Journal, vol. 387, no. 2, pp. 411–417, 2005. View at Publisher · View at Google Scholar · View at Scopus
  90. A. Barenholz, A. H. Hovav, Y. Fishman, G. Rahav, J. M. Gershoni, and H. Bercovier, “A peptide mimetic of the mycobacterial mannosylated lipoarabinomannan: characterization and potential applications,” Journal of Medical Microbiology, vol. 56, no. 5, pp. 579–586, 2007. View at Publisher · View at Google Scholar · View at Scopus
  91. J. B. Legutki, M. Nelson, R. Titball, D. R. Galloway, A. Mateczun, and L. W. Baillie, “Analysis of peptide mimotopes of Burkholderia pseudomallei exopolysaccharide,” Vaccine, vol. 25, no. 45, pp. 7796–7805, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. C. Beninati, M. Garibaldi, C. L. Passo et al., “Immunogenic mimics of Brucella lipopolysaccharide epitopes,” Peptides, vol. 30, no. 10, pp. 1936–1939, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. Y. Chen, B. Liu, D. Yang et al., “Peptide mimics of peptidoglycan are vaccine candidates and protect mice from infection with Staphylococcus aureus,” Journal of Medical Microbiology, vol. 60, no. 7, pp. 995–1002, 2011. View at Publisher · View at Google Scholar · View at Scopus
  94. J. P. Tam, “Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system,” Proceedings of the National Academy of Sciences of the United States of America, vol. 85, no. 15, pp. 5409–5413, 1988. View at Google Scholar · View at Scopus
  95. N. Yuki, “Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes,” Lancet Infectious Diseases, vol. 1, no. 1, pp. 29–37, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. T. Feizi, “Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens,” Nature, vol. 314, no. 6006, pp. 53–57, 1985. View at Google Scholar · View at Scopus