Table of Contents Author Guidelines Submit a Manuscript
Journal of Nucleic Acids
Volume 2019, Article ID 5484896, 13 pages
https://doi.org/10.1155/2019/5484896
Research Article

Genetic Clearness Novel Strategy of Group I Bacillus Species Isolated from Fermented Food and Beverages by Using Fibrinolytic Enzyme Gene Encoding a Serine-Like Enzyme

1Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Avenue de l’Auberge Gascogne, BP 2400, Brazzaville, Congo
2Laboratoire de Biologie Cellulaire et Moléculaire (BCM), Faculté des Sciences et Techniques, Université Marien NGOUABI, BP 69, Brazzaville, Congo

Correspondence should be addressed to Christian Aimé Kayath; rf.oohay@htayaksirhc

Received 13 March 2019; Accepted 28 April 2019; Published 20 May 2019

Academic Editor: Ramon Eritja

Copyright © 2019 Moïse Doria Kaya-Ongoto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Ben Omar, H. Abriouel, S. Keleke et al., “Bacteriocin-producing Lactobacillus strains isolated from poto poto, a Congolese fermented maize product, and genetic fingerprinting of their plantaricin operons,” International Journal of Food Microbiology, vol. 127, no. 1-2, pp. 18–25, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. B. Vouidibio Mbozo, S. C. Kobawila, A. Anyogu et al., “Investigation of the diversity and safety of the predominant Bacillus pumilus sensu lato and other Bacillus species involved in the alkaline fermentation of cassava leaves for the production of Ntoba Mbodi,” Food Control, vol. 82, pp. 154–162, 2017. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Aime Kayath, E. Nguimbi, J. Goma Tchimbakala, V. Mamonekene, A. Aime Lebonguy, and G. Ahombo, “Towards the understanding of fermented food biotechnology in congo brazzaville,” Advance Journal of Food Science and Technology, vol. 12, no. 11, pp. 593–602, 2016. View at Publisher · View at Google Scholar
  4. L. I. I. Ouoba, C. A. G. Nyanga-Koumou, C. Parkouda et al., “Genotypic diversity of lactic acid bacteria isolated from African traditional alkaline-fermented foods,” Journal of Applied Microbiology, vol. 108, no. 6, pp. 2019–2029, 2010. View at Google Scholar · View at Scopus
  5. A. B. V. Mbozo, C. A. Kayath, E. Nguimbi, A. A. Lebonguy, and C. S. Kobawila, “Potential spore-forming probiotics isolated from ntoba mbodi, alkaline fermented leaves of cassava from the republic of the congo,” International Journal of Science and Research (IJSR), vol. 6, no. 1, p. 6, 2017. View at Google Scholar
  6. J. P. Tamang, K. Watanabe, and W. H. Holzapfel, “Review: Diversity of microorganisms in global fermented foods and beverages,” Frontiers in Microbiology, vol. 7, p. 377, 2016. View at Google Scholar · View at Scopus
  7. F. M. F. Elshaghabee, N. Rokana, R. D. Gulhane, C. Sharma, and H. Panwar, “Bacillus as potential probiotics: Status, concerns, and future perspectives,” Frontiers in Microbiology, vol. 8, p. 1490, 2017. View at Google Scholar · View at Scopus
  8. G. Moreno-Hagelsieb and S. C. Janga, “Operons and the effect of genome redundancy in deciphering functional relationships using phylogenetic profiles,” Proteins: Structure, Function, and Genetics, vol. 70, no. 2, pp. 344–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. L. D. Alcaraz, G. Moreno-Hagelsieb, L. E. Eguiarte, V. Souza, L. Herrera-Estrella, and G. Olmedo, “Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics,” BMC Genomics, vol. 11, p. 332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Bhandari, N. Z. Ahmod, H. N. Shah, and R. S. Gupta, “Molecular signatures for Bacillus species: demarcation of the Bacillus subtilis and Bacillus cereus clades in molecular terms and proposal to limit the placement of new species into the genus Bacillus,” International Journal of Systematic and Evolutionary Microbiology, vol. 63, no. 7, pp. 2712–2726, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Wang and M. Sun, “Phylogenetic relationships between Bacillus species and related genera inferred from 16S rDNA sequences,” Brazilian Journal of Microbiology, vol. 40, no. 3, pp. 505–521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Guglielmetti, D. Mora, and C. Parini, “Small rolling circle plasmids in Bacillus subtilis and related species: Organization, distribution, and their possible role in host physiology,” Plasmid, vol. 57, no. 3, pp. 245–264, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Das, H. R. Dash, N. Mangwani, J. Chakraborty, and S. Kumari, “Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms,” Journal of Microbiological Methods, vol. 103, pp. 80–100, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Wang, F. Lee, C. Tai, and H. Kasai, “Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA DNA hybridization in the Bacillus subtilis group,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 8, pp. 1846–1850, 2007. View at Publisher · View at Google Scholar
  15. J.-S. Ki, W. Zhang, and P.-Y. Qian, “Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification,” Journal of Microbiological Methods, vol. 77, no. 1, pp. 48–57, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Goto, T. Omura, Y. Hara, and Y. Sadaie, “Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus,” The Journal of General and Applied Microbiology, vol. 46, no. 1, pp. 1–8, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. S. G. Bavykin, Y. P. Lysov, V. Zakhariev et al., “Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms,” Journal of Clinical Microbiology, vol. 42, no. 8, pp. 3711–3730, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Ash, J. A. E. Farrow, S. Wallbanks, and M. D. Collins, “Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small‐subunit‐ribosomal RNA sequences,” Letters in Applied Microbiology, vol. 13, no. 4, pp. 202–206, 1991. View at Google Scholar · View at Scopus
  19. R. Saito, Y. Ozawa, N. Kuzuno, and M. Tomita, “Computer analysis of potential stem structures of rRNA operons in various procaryote genomes,” Gene, vol. 259, pp. 217–222, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. G. B. Fogel, C. R. Collins, J. Li, and C. F. Brunk, “Prokaryotic genome size and SSU rDNA copy number: Estimation of microbial relative abundance from a mixed population,” Microbial Ecology, vol. 38, no. 2, pp. 93–113, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Sumi, H. Hamada, H. Tsushima, H. Mihara, and H. Muraki, “A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet,” Experientia, vol. 43, no. 10, pp. 1110-1111, 1987. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Peng and Y. Z. Zhang, “Isolation and characterization of fibrinolytic enzyme-producing strain DC-4 from Chinese douchi and primary analysis of the enzyme property,” High Technol Lett, vol. 12, pp. 30–33, 2002. View at Google Scholar
  23. W. Kim, K. Choi, Y. Kim et al., “Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang,” Applied and Environmental Microbiology, vol. 62, no. 7, pp. 2482–2488, 1996. View at Google Scholar · View at Scopus
  24. E. Nguimbi, “Production of a new fibrinolytic enzyme, bacterium growth and enzyme production conditions, purification and characterization of the new enzyme,” Biotechnology, vol. 12, 2002. View at Google Scholar
  25. G. M. Kim, A. R. Lee, K. W. Lee et al., “Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang,” Journal of Microbiology and Biotechnology, vol. 19, no. 10, pp. 997–1004, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. E. Nguimbi, G. Ahombo, R. Moyen, R. Ampa, and A. Vouidibio, “Optimization of growth, fibrinolytic enzyme producrion and PCR amplification of encoding fibrinolytic enzyme gene in Bacillus amyloliquefaciens isolated from Ntoba mbodi at Brazzaville,” International Journal of Science and Research (IJSR), vol. 3, no. 11, 2014. View at Google Scholar
  27. V. Ulyanova, R. Shah Mahmud, E. Dudkina, V. Vershinina, and O. Ilinskaya, “Draft whole genome sequence of Bacillus pumilus strain 3-19, a chemical mutant overproducing extracellular ribonuclease,” Genome Announcements, vol. 2, no. 4, 2014. View at Google Scholar · View at Scopus
  28. D. A. Coil, J. N. Benardini, and J. A. Eisen, “Draft genome sequence of Bacillus safensis JPL-MERTA-8-2, isolated from a Mars-Bound Spacecraft,” Genome Announcements, vol. 3, no. 6, 2015. View at Google Scholar · View at Scopus
  29. A. Tsirigotaki, J. De Geyter, N. Šoštarić, A. Economou, and S. Karamanou, “Protein export through the bacterial Sec pathway,” Nature Reviews Microbiology, vol. 15, no. 1, pp. 21–36, 2017. View at Publisher · View at Google Scholar · View at Scopus
  30. X.-M. HAN, R.-F. GUO, H.-W. YU, and Y.-M. JIA, “Cloning and Expression of One Fibrinolytic Enzyme from Bacillus sp. zlw-2,” Agricultural Sciences in China, vol. 8, no. 5, pp. 591–596, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Drancourt, C. Bollet, A. Carlioz, R. Martelin, J.-P. Gayral, and D. Raoult, “16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates,” Journal of Clinical Microbiology, vol. 38, no. 10, pp. 3623–3630, 2000. View at Google Scholar · View at Scopus
  32. C. A. Kayath, A. Ibala Zamba, J. Goma-Tchimbakala et al., “Microbiota landscape of gut system of guppy fish (poecilia reticulata) plays an outstanding role in adaptation mechanisms,” International Journal of Microbiology, vol. 2019, pp. 1–10, 2019. View at Publisher · View at Google Scholar
  33. W. L. Nicholson, “Roles of Bacillus endospores in the environment,” Cellular and Molecular Life Sciences, vol. 59, no. 3, pp. 410–416, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. F. S. A. Da Fonseca, C. F. F. Angolini, M. A. Z. Arruda et al., “Identification of oxidoreductases from the petroleum Bacillus safensis strain,” Biotechnology Reports, vol. 8, pp. 152–159, 2015. View at Publisher · View at Google Scholar · View at Scopus
  35. B. Buszewski, A. Rogowska, P. Pomastowski, M. Złoch, and V. Railean-Plugaru, “Identification of microorganisms by modern analytical techniques,” Journal of AOAC International, vol. 100, no. 6, pp. 1607–1623, 2017. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Ben Ayed, N. Hmidet, M. Béchet et al., “Identification and biochemical characteristics of lipopeptides from Bacillus mojavensis A21,” Process Biochemistry, vol. 49, no. 10, pp. 1699–1707, 2014. View at Publisher · View at Google Scholar · View at Scopus
  37. C. W. Bacon, D. M. Hinton, T. R. Mitchell, M. E. Snook, and B. Olubajo, “Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers,” Biological Control, vol. 62, no. 1, pp. 1–9, 2012. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Muir, E. Harrison, and A. Wheals, “A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces,” FEMS Yeast Research, vol. 11, no. 7, pp. 552–563, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. D. W. Nebert and E. Bingham, “Pharmacogenomics: Out of the lab and into the community,” Trends in Biotechnology, vol. 19, no. 12, pp. 519–523, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. R.-H. Zhang, L. Xiao, Y. Peng, H.-Y. Wang, F. Bai, and Y. Zhang, “Gene expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli,” Letters in Applied Microbiology, vol. 41, no. 2, pp. 190–195, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Ghasemi, F. Dabbagh, and A. Ghasemian, “Cloning of a fibrinolytic enzyme (subtilisin) gene from bacillus subtilis in Escherichia coli,” Molecular Biotechnology, vol. 52, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  42. S.-J. Jeong, K. Heo, J. Y. Park et al., “Characterization of AprE176, a fibrinolytic enzyme from Bacillus subtilis HK176,” Journal of Microbiology and Biotechnology, vol. 25, no. 1, pp. 89–97, 2015. View at Publisher · View at Google Scholar · View at Scopus
  43. K. Heo, K. M. Cho, C. K. Lee et al., “Characterization of a fibrinolytic enzyme secreted by bacillus amyloliquefaciens cb1 and its gene cloning,” Journal of Microbiology and Biotechnology, vol. 23, no. 7, pp. 974–983, 2013. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Martínez-Govea, J. Ambrosio, L. Gutiérrez-Cogco, and A. Flisser, “Identification and strain differentiation of Vibrio cholerae by using polyclonal antibodies against outer membrane proteins,” Clinical and Diagnostic Laboratory Immunology, vol. 8, no. 4, pp. 768–771, 2001. View at Google Scholar · View at Scopus
  45. M. Porcar and V. Juárez-Pérez, “PCR-based identification of Bacillus thuringiensis pesticidal crystal genes,” FEMS Microbiology Reviews, vol. 26, no. 5, pp. 419–432, 2003. View at Publisher · View at Google Scholar · View at Scopus