Table of Contents
Journal of Neurodegenerative Diseases
Volume 2014, Article ID 369468, 10 pages
http://dx.doi.org/10.1155/2014/369468
Research Article

Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses

1Department of Anatomy, University of Kiel, Olshausenstraße 40, 24098 Kiel, Germany
2Department of Nephrology and Hypertension, Friedrich-Alexander-University Erlangen-Nuernberg, 91054 Erlangen, Germany
3Department of Neurology, Texas Tech University, 3601 4th Street, Lubbock, TX 79430, USA
4Department of Neurosurgery, University Hospital of Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany

Received 3 April 2014; Accepted 18 May 2014; Published 9 June 2014

Academic Editor: Colin Combs

Copyright © 2014 Uta Rickert et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. B. Banati, J. Gehrmann, P. Schubert, and G. W. Kreutzberg, “Cytotoxicity of microglia,” Glia, vol. 7, no. 1, pp. 111–118, 1993. View at Google Scholar · View at Scopus
  2. D. Giulian and M. Corpuz, “Microglial secretion products and their impact on the nervous system,” Advances in Neurology, vol. 59, pp. 315–320, 1993. View at Google Scholar · View at Scopus
  3. P. L. McGeer and E. G. McGeer, “The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases,” Brain Research Reviews, vol. 21, no. 2, pp. 195–218, 1995. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Mogi, M. Harada, T. Kondob et al., “Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients,” Neuroscience Letters, vol. 180, no. 2, pp. 147–150, 1994. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Nagatsu and M. Sawada, “Inflammatory process in Parkinson's disease: role for cytokines,” Current Pharmaceutical Design, vol. 11, no. 8, pp. 999–1016, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. L.-F. H. Lin, D. H. Doherty, J. D. Lile, S. Bektesh, and F. Collins, “GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons,” Science, vol. 260, no. 5111, pp. 1130–1132, 1993. View at Google Scholar · View at Scopus
  7. K. D. Beck, J. Valverde, T. Alexi et al., “Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain,” Nature, vol. 373, no. 6512, pp. 339–341, 1995. View at Google Scholar · View at Scopus
  8. R. W. Oppenheim, L. J. Houenou, J. E. Johnson et al., “Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF,” Nature, vol. 373, no. 6512, pp. 344–346, 1995. View at Google Scholar · View at Scopus
  9. R. Schmidt-Kastner, A. Tomac, B. Hoffer, S. Bektesh, B. Rosenzweig, and L. Olson, “Glial cell-line derived neurotrophic factor (GDNF) mRNA upregulation in striatum and cortical areas after pilocarpine-induced status epilepticus in rats,” Molecular Brain Research, vol. 26, no. 1-2, pp. 325–330, 1994. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Satake, Y. Matsuyama, M. Kamiya et al., “Up-regulation of glial cell line-derived neurotrophic factor (GDNF) following traumatic spinal cord injury,” NeuroReport, vol. 11, no. 17, pp. 3877–3881, 2000. View at Google Scholar · View at Scopus
  11. T. Ikeda, X. Y. Xia, Y. X. Xia, T. Ikenoue, B. Han, and B. H. Choi, “Glial cell line-derived neurotrophic factor protects against ischemia/hypoxia-induced brain injury in neonatal rat,” Acta Neuropathologica, vol. 100, no. 2, pp. 161–167, 2000. View at Google Scholar · View at Scopus
  12. H. Cheng, J.-P. Wu, and S.-F. Tzeng, “Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury,” Journal of Neuroscience Research, vol. 69, no. 3, pp. 397–405, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. M. S. Airaksinen and M. Saarma, “The GDNF family: signalling, biological functions and therapeutic value,” Nature Reviews Neuroscience, vol. 3, no. 5, pp. 383–394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Trupp, E. Arenas, M. Fainzilber et al., “Functional receptor for GDNF encoded by the c-ret proto-oncogene,” Nature, vol. 381, no. 6585, pp. 785–789, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. J. P. Golden, R. H. Baloh, P. T. Kotzbauer et al., “Expression of neurturin, GDNF, and their receptors in the adult mouse CNS,” Journal of Comparative Neurology, vol. 398, pp. 139–150, 1998. View at Google Scholar
  16. D. G. Walker, T. G. Beach, R. Xu et al., “Expression of the proto-oncogene Ret, a component of the GDNF receptor complex, persists in human substantia nigra neurons in Parkinson's disease,” Brain Research, vol. 792, no. 2, pp. 207–217, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Honda, K. Nakajima, Y. Nakamura, Y. Imai, and S. Kohsaka, “Rat primary cultured microglia express glial cell line-derived neurotrophic factor receptors,” Neuroscience Letters, vol. 275, no. 3, pp. 203–206, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Sariola and M. Saarma, “Novel functions and signalling pathways for GDNF,” Journal of Cell Science, vol. 116, no. 19, pp. 3855–3862, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Paratcha, F. Ledda, and C. F. Ibáñez, “The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands,” Cell, vol. 113, no. 7, pp. 867–879, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. Y.-P. Chang, K.-M. Fang, T.-I. Lee, and S.-F. Tzeng, “Regulation of microglial activities by glial cell line derived neurotrophic factor,” Journal of Cellular Biochemistry, vol. 97, no. 3, pp. 501–511, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. Xing, T. Xin, L. Zhao, R. L. Hunter, Y. Chen, and G. Bing, “Glial cell line-derived neurotrophic factor protects midbrain dopaminergic neurons against lipopolysaccharide neurotoxicity,” Journal of Neuroimmunology, vol. 225, no. 1-2, pp. 43–51, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Wilms, J. Sievers, U. Rickert, M. Rostami-Yazdi, U. Mrowietz, and R. Lucius, “Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation,” Journal of Neuroinflammation, vol. 7, article 30, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Horsthemke, M. Schulz, and K. Bauer, “Degradation of substance P by neurones and glial cells,” Biochemical and Biophysical Research Communications, vol. 125, no. 2, pp. 728–733, 1984. View at Google Scholar · View at Scopus
  24. S. B. Rangasamy, K. Soderstrom, R. A. Bakay, and J. H. Kordower, “Neurotrophic factor therapy for Parkinson's disease,” Progress in Brain Research, vol. 184, pp. 237–264, 2010. View at Google Scholar
  25. D.-Y. Choi, M. Liu, R. L. Hunter et al., “Striatal neuroinflammation promotes parkinsonism in rats,” PLoS ONE, vol. 4, no. 5, Article ID e5482, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. J. Mihm, B. L. Schanbacher, B. L. Wallace, L. J. Wallace, N. J. Uretsky, and J. A. Bauer, “Free 3-nitrotyrosine causes striatal neurodegeneration in vivo,” The Journal of Neuroscience, vol. 21, no. 11, article RC149, 2001. View at Google Scholar · View at Scopus
  27. C. Nathan, “Nitric oxide as a secretory product of mammalian cells,” FASEB Journal, vol. 6, no. 12, pp. 3051–3064, 1992. View at Google Scholar · View at Scopus
  28. G. Boka, P. Anglade, D. Wallach, F. Javoy-Agid, Y. Agid, and E. C. Hirsch, “Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease,” Neuroscience Letters, vol. 172, no. 1-2, pp. 151–154, 1994. View at Publisher · View at Google Scholar · View at Scopus
  29. H. C. Pieper, B. O. Evert, O. Kaut, P. F. Riederer, A. Waha, and U. Wüllner, “Different methylation of the TNF-alpha promoter in cortex and substantia nigra: implications for selective neuronal vulnerability,” Neurobiology of Disease, vol. 32, no. 3, pp. 521–527, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Owens, H. Wekerle, and J. Antel, “Genetic models for CNS inflammation,” Nature Medicine, vol. 7, no. 2, pp. 161–166, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Dutta, P. Zhang, and B. Liu, “The lipopolysaccharide Parkinson's disease animal model: mechanistic studies and drug discovery,” Fundamental and Clinical Pharmacology, vol. 22, no. 5, pp. 453–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Sui, D. Stanić, D. Tomas, B. Jarrott, and M. K. Horne, “Meloxicam reduces lipopolysaccharide-induced degeneration of dopaminergic neurons in the rat substantia nigra pars compacta,” Neuroscience Letters, vol. 460, no. 2, pp. 121–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. L. T. Diemel, C. A. Copelman, and M. L. Cuzner, “Macrophages in CNS remyelination: friend or foe?” Neurochemical Research, vol. 23, no. 3, pp. 341–347, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. S. W. Barger and A. D. Harmon, “Microglial activation by alzhelmer amyloid precursor protein and modulation by apolipoprotein E,” Nature, vol. 388, no. 6645, pp. 878–881, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. D. Giulian, J. Yu, X. Li et al., “Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain,” Journal of Neuroscience, vol. 16, no. 10, pp. 3139–3153, 1996. View at Google Scholar · View at Scopus
  36. H. Wilms, P. Rosenstiel, M. Romero-Ramos et al., “Suppression of map kinases inhibits microglial activation and attenuates neuronal cell death induced by α-synuclein protofibrils,” International Journal of Immunopathology and Pharmacology, vol. 22, no. 4, pp. 897–909, 2009. View at Google Scholar · View at Scopus
  37. S. S. Gill, N. K. Patel, G. R. Hotton et al., “Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease,” Nature Medicine, vol. 9, pp. 589–595, 2003. View at Google Scholar
  38. J. T. Slevin, G. A. Gerhardt, C. D. Smith, D. M. Gash, R. Kryscio, and B. Young, “Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor,” Journal of Neurosurgery, vol. 102, no. 2, pp. 216–222, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. T. J. Collier and C. E. Sortwell, “Therapeutic potential of nerve growth factors in Parkinson's disease,” Drugs and Aging, vol. 14, no. 4, pp. 261–287, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. P. L. McGeer, S. Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains,” Neurology, vol. 38, no. 8, pp. 1285–1291, 1988. View at Google Scholar · View at Scopus
  41. Y. Ouchi, E. Yoshikawa, Y. Sekine et al., “Microglial activation and dopamine terminal loss in early Parkinson's disease,” Annals of Neurology, vol. 57, no. 2, pp. 168–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  42. S. M. Rocha, A. C. Cristovão, F. L. Campos, C. P. Fonseca, and G. Baltazar, “Astrocyte-derived GDNF is a potent inhibitor of microglial activation,” Neurobiology of Disease, vol. 47, no. 3, pp. 407–415, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. Y. Matsushita, K. Nakajima, Y. Tohyama, T. Kurihara, and S. Kohsaka, “Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase Cα (PKCα) and mitogen-activated protein kinases (MAPKs),” Journal of Neuroscience Research, vol. 86, no. 9, pp. 1959–1971, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. Xing, A. D. Bachstetter, and L. J. Eldik, “Microglial p38α MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFα,” Molecular Neurodegeneration, vol. 6, no. 1, article 84, 2011. View at Publisher · View at Google Scholar · View at Scopus