Abstract

B-rich nanowires are grown on Ni coated oxidized Si(111) substrate using diborane as the gas precursor in a CVD process at 20 torr and 900C. These nanowires have diameters around 20–100 nanometers and lengths up to microns. Icosahedron B12 is shown to be the basic building unit forming the amorphous B-rich nanowires as characterized by EDAX, XRD, XPS, and Raman spectroscopies. The gas chemistry at low [B2H6]/ [N2] ratio is monitored by the in situ mass spectroscopy, which identified N2 as an inert carrier gas leading to formation of the B-rich compounds. A nucleation controlled growth mechanism is proposed to explain the rugged nanowire growth of boron. The role of the Ni catalyst in the synthesis of the B-rich nanostructures is also discussed.