Journal of Nanomaterials
 Journal metrics
Acceptance rate49%
Submission to final decision69 days
Acceptance to publication29 days
CiteScore3.200
Impact Factor1.980

Perioperative Use of Flurbiprofen Axetil on Renal Function after Transurethral Prostatectomy: A Prospective Randomized Controlled Study

Read the full article

 Journal profile

Journal of Nanomaterials publishes research on nanoscale and nanostructured materials with an emphasis on synthesis, processing, characterization, and the applications of nanomaterials.

 Editor spotlight

Journal of Nanomaterials maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

A Novel Fe3O4/Graphene Oxide Composite Prepared by Click Chemistry for High-Efficiency Removal of Congo Red from Water

In this paper, a magnetic graphene oxide (MGO) composite was prepared by the click reaction between the alkyne-modified Fe3O4 nanoparticles and the azide-modified graphene oxide for the purpose of removing the Congo red (CR) dye from water. The deposition of the Fe3O4 nanoparticles on the graphene oxide to successfully prepare the MGO composite was evidenced by the Fourier-transform infrared spectrometer, wide-angle X-ray diffraction equipment, scanning electron microscope, thermal gravimetric analyzer, and Raman spectrometer. The value of saturation magnetization for the MGO composite was 34.9 emu/g. The CR absorption capacities of the MGO composite increased first and then decreased as the pH value increased. It was found that the maximum adsorption capacity of the MGO composite for the CR was as high as 769.2 mg/g. In the absorption-desorption experiment, the CR absorption capacities of the MGO composite from the second cycle to the fifth cycle remained stable to be about 130 mg/g. Moreover, both the Langmuir model for the adsorption isotherm and the pseudo-second-order kinetic model could be used to describe the CR absorption behaviors of the MGO composite.

Research Article

Size Effects of Closed Encounter Ag Nanoshell Pairs for SERS Application

Closed encounter Ag nanoshell pairs with remarkable improved plasmonic light enhancement in their gaps have been attracting much attention in the production of sensitivity SERS substrates. This work demonstrates the size effects of Ag nanoshell pairs on obtaining higher light intensity in their gaps. It is found that very complex light intensity changes occur in the gaps of Ag nanoshell pairs with their diameter enlargements ( nm). By the calculation of scattering efficiency and electric field vectors, the size-related light intensity changes in the gaps have been revealed and been concluded systematically. This work fills in the gaps of application of nanoshell pairs with larger sizes in SERS detectors and could guide the design of some other Ag nanoshell pair-based optical devices.

Research Article

Nanoencapsulation of Chromolaena odorata Extract Using Pluronic F127 as an Effectively Herbal Delivery System for Wound Healing

Chromolaena odorata is a medicinal herb with prominent pharmacological properties. The therapeutic efficiency of Chromolaena odorata extracts and its ingredients have, however, been limited by various factors, including the lack of targeting capacity and poor bioavailability. To approach this drawback, ethyl acetate fraction extract of Chromolaena odorata- (EA.ChO-) encapsulated pluronic-based nanocarriers was disclosed herein. The most common pluronic triblock copolymer micelles (pluronic F127) was used for the nanosized formulation of Chromolaena odorata extract. The obtained results show that EA.ChO-encapsulated nanoparticles have a spherical morphology with a designed hydrodynamic size was about 183.7 nm and zeta potential -39.5 mV. The EA.ChO nanoparticles are stable in different aqueous solutions (water, PBS 2.8, and PBS 7.4). The lyophilized form of the EA.ChO nanoparticles exhibited excellent stability for long-term storage. Notably, the EA.ChO nanoparticles were 1.3-1.4 fold more effective in the growth of fibroblast than the free EA.ChO, verifying the potential of pluronic F127 nanoparticles to the increased function of EA.ChO in the proliferation of fibroblast cell. In addition, bleeding stopped within  s which was 20 s faster than that of free EA.ChO and 38-44 s faster than that of negative control treatments. The EA.ChO nanoencapsulation processed a rapid blood clot formation compared to control, free EA.ChO, pluronic F127, and water, suggesting the excellent bioavailability of EA.ChO nanoencapsulation. The obtained results thus provided a promising prospect for raising the activity Chromolaena odorata extract in wound healing application.

Review Article

Recent Advances on Nanotechnology-Based Strategies for Prevention, Diagnosis, and Treatment of Coronavirus Infections

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is exponentially spreading across the world, leading to an outbreak of serious viral pneumonia. Antiviral therapies using chloroquine, hydroxychloroquine, and favipiravir have been approved by several countries to increase the quality of life of SARS-CoV-2-infected patients. Currently, several companies are intensively working on the production of coronavirus (CoV) vaccines, resulting in some specific vaccines that have been approved for CoV infections in humans. Nevertheless, efficient and specific prevention, treatment, and diagnosis are urgently required to combat the biological diversity and rapid mutation in CoV infections. Recently, significant attention has devoted to nanoformulation or nanoparticles (NPs) due to their specific features like high surface-to-volume ratio, drug encapsulation abilities, and specific optical properties to remove the complications of applied conventional therapeutic and diagnosis options. In this regard, NPs are increasingly used as new anti-CoV agents, vaccine carriers or adjuvants, and nanoscale biorecognition elements. The present review article provides a comprehensive discussion on the recent updates regarding the prevention, diagnosis, and treatment of different CoV infections with an emphasis on the application of NPs in vaccination, treatment, and diagnosis of CoV infections.

Research Article

Performance of Cotton, Cotton-Polyester, and Polyester-Elastane Fabrics Impregnated with Ultrafine Polymeric Nanoparticles Loaded with Lavender Oil

Lavender oil- (LO-) loaded ultrafine nanoparticles (NP) () of a copolymer were used for impregnating fabrics of cotton, cotton polyester, and polyester-elastane. The copolymer was composed mainly of methyl methacrylate (MMA) units with a low proportion of methacrylic acid (MAA). Moreover, two kinds of NP were used: one containing uncrosslinked copolymer and another one composed of crosslinked material. All the fabrics impregnated with NP of uncrosslinked copolymer keep the aroma up to 25 washes. Under storage at ambient conditions, the fabrics impregnated with NP of either uncrosslinked or crosslinked copolymer emitted aroma for up to almost 60 days. The long duration of aroma emission from fabrics is attributed to ease of the small nanoparticles used in this study of penetrating and staying inside the pores of the fabric fibers.

Research Article

Synthesis of Hybrid Lead Iodide Perovskite Thin Film by Two-Step Method Modified with a Double Dipping Circle to Control Its Crystallization and Morphology to Improve Solar Cells’ Performance

Crystallization and morphology of perovskite film played an important role to obtain efficient performance of perovskite solar cells. This study is aimed at optimizing the fabrication of hybrid organic–inorganic lead iodide perovskite layer by a two-step method modified by a double dip coating process which enables to control the perovskite crystallization and morphology. The duration time of each circle for the step of dipping PbI2 film to methylammonium iodide solution was varied from 90 to 240 second. The obtained perovskite films were characterized by X-ray diffraction to evaluate the transformation of PbI2 reactant to the perovskite product and its crystallization, by scanning electron microscopy to observe its morphology. Then, the perovskite films were implemented in functional perovskite solar cell devices followed by current–voltage characterization. Results showed that the perovskite was formed via an equilibrium process which reached an optimum transformation of PbI2 to the product after  second circle dip coating, and its morphology was smooth with the least voids. The solar cell devices fabricated at the optimum conditions achieved a comparable performance of about 14%.

Journal of Nanomaterials
 Journal metrics
Acceptance rate49%
Submission to final decision69 days
Acceptance to publication29 days
CiteScore3.200
Impact Factor1.980
 Submit