Journal of Nanomaterials

Journal of Nanomaterials / 2007 / Article
Special Issue

Luminescent Nanomaterials

View this Special Issue

Review Article | Open Access

Volume 2007 |Article ID 084745 | https://doi.org/10.1155/2007/84745

C. Armellini, A. Chiappini, A. Chiasera, M. Ferrari, Y. Jestin, M. Mortier, E. Moser, R. Retoux, G. C. Righini, "Rare Earth-Activated Silica-Based Nanocomposites", Journal of Nanomaterials, vol. 2007, Article ID 084745, 6 pages, 2007. https://doi.org/10.1155/2007/84745

Rare Earth-Activated Silica-Based Nanocomposites

Academic Editor: Le Quoc Minh
Received03 Aug 2007
Accepted23 Nov 2007
Published23 Jan 2008

Abstract

Two different kinds of rare earth-activated glass-based nanocomposite photonic materials, which allow to tailor the spectroscopic properties of rare-earth ions: (i) Er3+-activated SiO2-HfO2 waveguide glass ceramic, and (ii) core-shell-like structures of Er3+-activated silica spheres obtained by a seed growth method, are presented.

References

  1. P. Moriarty, “Nanostructured materials,” Reports on Progress in Physics, vol. 64, pp. 297–381, 2001. View at: Publisher Site | Google Scholar
  2. R. S. Meltzer, W. M. Yen, H. Zheng et al., “Effect of the matrix on the radiative lifetimes of rare earth doped nanoparticles embedded in matrices,” Journal of Luminescence, vol. 94-95, pp. 217–220, 2001. View at: Publisher Site | Google Scholar
  3. R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, “Dependence of fluorescence lifetimes of Y2O3:Eu3+ nanoparticles on the surrounding medium,” Physical Review B, vol. 60, no. 20, pp. R14012–R14015, 1999. View at: Google Scholar
  4. M. Mortier and F. Auzel, “Rare-earth doped transparent glass-ceramics with high cross-sections,” Journal of Non-Crystalline Solids, vol. 256-257, pp. 361–365, 1999. View at: Publisher Site | Google Scholar
  5. Y. Wang and J. Ohwaki, “New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion,” Applied Physics Letters, vol. 63, no. 24, pp. 3268–3270, 1993. View at: Publisher Site | Google Scholar
  6. M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Rare-earth-doped transparent glass ceramics,” Comptes Rendus Chimie, vol. 5, no. 12, pp. 845–854, 2002. View at: Publisher Site | Google Scholar
  7. M. Mortier, “Between glass and crystal: glass-ceramics, a new way for optical materials,” Philosophical Magazine B, vol. 82, no. 6, pp. 745–753, 2002. View at: Publisher Site | Google Scholar
  8. F. Auzel and P. Goldner, “Towards rare-earth clustering control in doped glasses,” Optical Materials, vol. 16, no. 1-2, pp. 93–103, 2001. View at: Publisher Site | Google Scholar
  9. V. K. Tikhomirov, V. D. Rodríguez, J. Méndez-Ramos, P. Núñez, and A. B. Seddon, “Comparative spectroscopy of (ErF3)(PbF2) alloys and Er3+-doped oxyfluoride glass-ceramics,” Optical Materials, vol. 27, no. 3, pp. 543–547, 2004. View at: Publisher Site | Google Scholar
  10. L. L. Kukkonen, I. M. Reaney, D. Furniss, M. G. Pellatt, and A. B. Seddon, “Nucleation and crystallisation of transparent, erbium III-doped, oxyfluoride glass-ceramics,” Journal of Non-Crystalline Solids, vol. 290, no. 1, pp. 25–31, 2001. View at: Publisher Site | Google Scholar
  11. M. Mattarelli, V. K. Tikhomirov, A. B. Seddon et al., “Tm3+-activated transparent oxy-fluoride glass-ceramics: structural and spectroscopic properties,” Journal of Non-Crystalline Solids, vol. 345-346, pp. 354–358, 2004. View at: Publisher Site | Google Scholar
  12. F. Liu, Y. Wang, D. Chen, and Y. Yu, “Investigation on crystallization kinetics and microstructure of novel transparent glass ceramics containing Nd:NaYF4 nano-crystals,” Materials Science and Engineering B, vol. 136, no. 2-3, pp. 106–110, 2007. View at: Publisher Site | Google Scholar
  13. G. Dantelle, M. Mortier, D. Vivien, and G. Patriarche, “Influence of Ce3+ doping on the structure and luminescence of Er3+-doped transparent glass-ceramics,” Optical Materials, vol. 28, no. 6-7, pp. 638–642, 2006. View at: Publisher Site | Google Scholar
  14. M. Mortier, A. Bensalah, G. Dantelle, G. Patriarche, and D. Vivien, “Rare-earth doped oxyfluoride glass-ceramics and fluoride ceramics: synthesis and optical properties,” Optical Materials, vol. 29, no. 10, pp. 1263–1270, 2007. View at: Publisher Site | Google Scholar
  15. H. Hayashi, S. Tanabe, and T. Hanada, “1.4 μm band emission properties of Tm3+ ions in transparent glass-ceramics containing PbF2 nanocrystals for S-band amplifier,” Journal of Applied Physics, vol. 89, no. 2, pp. 1041–1045, 2001. View at: Publisher Site | Google Scholar
  16. V. K. Tikhomirov, D. Furniss, A. B. Seddon et al., “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Applied Physics Letters, vol. 81, no. 11, pp. 1937–1939, 2002. View at: Publisher Site | Google Scholar
  17. H. Oishi, Y. Benino, and T. Komatsu, “Preparation and optical properties of transparent tellurite based glass-ceramics doped by Er3+ and Eu3+,” Physics and Chemistry of Glasses, vol. 40, no. 4, pp. 212–218, 1999. View at: Google Scholar
  18. L. Kępiński and M. Wołcyrz, “Nanocrystalline rare earth silicates: structure and properties,” Materials Chemistry and Physics, vol. 81, no. 2-3, pp. 396–400, 2003. View at: Publisher Site | Google Scholar
  19. Q. Que, Y. Zhou, Y. L. Lam et al., “Photoluminescence of erbium oxide nanocrystals/Tio2/?-glycidoxypropyltrimethoxysilane (GLYMO) composite sol-gel thin films derived at low temperature,” Journal of Applied Physics, vol. 89, no. 5, pp. 3058–3060, 2001. View at: Publisher Site | Google Scholar
  20. C. Strohhöfer, J. Fick, H. C. Vasconcelos, and R. M. Almeida, “Active optical properties of Er-containing crystallites in sol-gel derived glass films,” Journal of Non-Crystalline Solids, vol. 226, no. 1-2, pp. 182–191, 1998. View at: Google Scholar
  21. M. Langlet, C. Coutier, J. Fick et al., “Sol-gel thin film deposition and characterization of a new optically active compound: Er2Ti2O7,” Optical Materials, vol. 16, no. 4, pp. 463–473, 2001. View at: Publisher Site | Google Scholar
  22. Y. Jestin, N. Afify, C. Armellini et al., “Er3+ activated silica-hafnia glass-ceramics planar waveguides,” in Integrated Optics, Silicon Photonics, and Photonic Integrated Circuits, vol. 6183 of Proceedings of SPIE, pp. 1–8, Strasbourg, France, April 2006. View at: Publisher Site | Google Scholar
  23. Y. Jestin, C. Arfuso-Duverger, C. Armellini et al., “Ceramization of erbium activated planar waveguides by bottom up technique,” in Optical Components and Materials IV, vol. 6469 of Proceedings of SPIE, pp. 1–9, San Jose, Calif, USA, January 2007. View at: Publisher Site | Google Scholar
  24. Y. Jestin, C. Armellini, A. Chiappini et al., “Erbium activated HfO2 based glass-ceramics waveguides for photonics,” Journal of Non-Crystalline Solids, vol. 353, no. 5–7, pp. 494–497, 2007. View at: Publisher Site | Google Scholar
  25. Y. Okamura, S. Yoshinaka, and S. Yamamoto, “Measuring mode propagation losses of integrated optical waveguides: a simple method,” Applied Optics, vol. 22, no. 23, pp. 3892–3894, 1983. View at: Google Scholar
  26. R. R. Gonçalves, G. Carturan, L. Zampedri et al., “Sol-gel erbium-doped silica-hafnia planar and channel waveguides,” in Rare-Earth-Doped Materials and Devices VII, vol. 4990 of Proceedings of SPIE, pp. 111–120, San Jose, Calif, USA, January 2003. View at: Publisher Site | Google Scholar
  27. N. D. Afify, G. Dalba, C. Armellini, M. Ferrari, F. Rocca, and A. Kuzmin, “Local structure around Er3+ in SiO2-HfO2 glassy waveguides using EXAFS,” Physical Review B, vol. 76, Article ID 024114, 8 pages, 2007. View at: Publisher Site | Google Scholar
  28. L. Zampedri, G. C. Righini, H. Portales et al., “Sol-gel-derived Er-activated SiO2-HfO2 planar waveguides for 1.5 µm application,” Journal of Non-Crystalline Solids, vol. 345-346, pp. 580–584, 2004. View at: Publisher Site | Google Scholar
  29. A. Chiappini, C. Armellini, S. N. B. Bhaktha et al., “Fabrication and optical assessment of sol-gel-derived photonic bandgap dielectric structures,” in Photonic Crystal Materials and Devices III, vol. 6182 of Proceedings of SPIE, pp. 1–10, Strasbourg, France, April 2006. View at: Publisher Site | Google Scholar
  30. A. Chiappini, C. Armellini, A. Chiasera et al., “Design of photonic structures by sol-gel-derived silica nanospheres,” Journal of Non-Crystalline Solids, vol. 353, no. 5–7, pp. 674–678, 2007. View at: Publisher Site | Google Scholar
  31. G. H. Bogush, M. A. Tracy, and C. F. Zukoski IV, “Preparation of monodisperse silica particles: control of size and mass fraction,” Journal of Non-Crystalline Solids, vol. 104, no. 1, pp. 95–106, 1988. View at: Publisher Site | Google Scholar
  32. M. J. A. de Dood, B. Berkhout, C. M. van Kats, A. Polman, and A. van Blaaderen, “Acid-based synthesis of monodisperse rare-earth-doped colloidal SiO2 spheres,” Chemistry of Materials, vol. 14, no. 7, pp. 2849–2853, 2002. View at: Publisher Site | Google Scholar
  33. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” Journal of Lightwave Technology, vol. 9, no. 2, pp. 234–250, 1991. View at: Publisher Site | Google Scholar
  34. M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, “Modified spontaneous emission in erbium-doped SiO2 spherical colloids,” Applied Physics Letters, vol. 79, no. 22, pp. 3585–3587, 2001. View at: Publisher Site | Google Scholar
  35. M. J. A. de Dood, L. H. Slooff, A. Polman, A. Moroz, and A. van Blaaderen, “Local optical density of states in SiO2 spherical microcavities: theory and experiment,” Physical Review A, vol. 64, no. 3, Article ID 033807, 7 pages, 2001. View at: Publisher Site | Google Scholar

Copyright © 2007 C. Armellini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


More related articles

 PDF Download Citation Citation
 Order printed copiesOrder
Views128
Downloads645
Citations

Related articles

We are committed to sharing findings related to COVID-19 as quickly as possible. We will be providing unlimited waivers of publication charges for accepted research articles as well as case reports and case series related to COVID-19. Review articles are excluded from this waiver policy. Sign up here as a reviewer to help fast-track new submissions.