Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2008 (2008), Article ID 243792, 7 pages
Research Article

Electrical Properties of Self-Assembled Nano-Schottky Diodes

1Dipartimento di Fisica ed Astronomia, Università di Catania, via Santa Sofia 64, 95123 Catania, Italy
2MATIS CNR-INFM, Department of Physics and Astronomy, University of Catania, via Santa Sofia 64, 95123 Catania, Italy
3Consiglio Nazionale delle Ricerche-Istituto per la Microelettronica e Microsistemi (CNR-IMM), Stradale Primosole 50, 95121 Catania, Italy

Received 23 May 2008; Accepted 9 September 2008

Academic Editor: Xuedong Bai

Copyright © 2008 F. Ruffino et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A bottom-up methodology to fabricate a nanostructured material by Au nanoclusters on 6H-SiC surface is illustrated. Furthermore, a methodology to control its structural properties by thermal-induced self-organization of the Au nanoclusters is demonstrated. To this aim, the self-organization kinetic mechanisms of Au nanoclusters on SiC surface were experimentally studied by scanning electron microscopy, atomic force microscopy, Rutherford backscattering spectrometry and theoretically modelled by a ripening process. The fabricated nanostructured materials were used to probe, by local conductive atomic force microscopy analyses, the electrical properties of nano-Schottky contact Au nanocluster/SiC. Strong efforts were dedicated to correlate the structural and electrical characteristics: the main observation was the Schottky barrier height dependence of the nano-Schottky contact on the cluster size. Such behavior was interpreted considering the physics of few electron quantum dots merged with the concepts of ballistic transport and thermoionic emission finding a satisfying agreement between the theoretical prediction and the experimental data. The fabricated Au nanocluster/SiC nanocontact is suggested as a prototype of nano-Schottky diode integrable in complex nanoelectronic circuits.