Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2008 (2008), Article ID 475168, 5 pages
http://dx.doi.org/10.1155/2008/475168
Research Article

Metallic Nanoparticles Embedded in a Dielectric Matrix: Growth Mechanisms and Percolation

1Departament de Física Fonamental i Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
2Departament de Física Aplicada i Òptica i Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

Received 1 October 2007; Accepted 26 December 2007

Academic Editor: Ping Xiao

Copyright © 2008 M. García del Muro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. F. Brouers, J. P. Clerc, G. Giraud, J. M. Laugier, and Z. A. Randriamantany, “Dielectric and optical properties close to the percolation threshold. II,” Physical Review B, vol. 47, no. 2, pp. 666–673, 1993. View at Publisher · View at Google Scholar
  2. A. B. Pakhomov, X. Yan, and B. Zhao, “Giant Hall effect in percolating ferromagnetic granular metal-insulator films,” Applied Physics Letters, vol. 67, pp. 3497–3499, 1995. View at Publisher · View at Google Scholar
  3. X. X. Zhang, C. Wan, H. Liu, Z. Q. Li, P. Sheng, and J. J. Lin, “Giant Hall effect in nonmagnetic granular metal films,” Physical Review Letters, vol. 86, no. 24, pp. 5562–5565, 2001. View at Publisher · View at Google Scholar
  4. Y. Hamanaka, K. Fukuta, A. Nakamura, L. M. Liz-Marzán, and P. Mulvaney, “Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations,” Applied Physics Letters, vol. 84, no. 24, pp. 4938–4940, 2004. View at Publisher · View at Google Scholar
  5. Q. Wang, S. Wang, W. Hang, and Q. Gong, “Optical resonant absorption and third-order nonlinearity of (Au,Ag)-TiO2 granular composite films,” Journal of Physics D, vol. 38, no. 3, pp. 389–391, 2005. View at Publisher · View at Google Scholar
  6. M. Maaza, O. Nemraoui, C. Sella, A. C. Beye, and B. Baruch-Barak, “Thermal induced tunability of surface plasmon resonance in Au-VO2 nano-photonics,” Optics Communications, vol. 254, no. 1–3, pp. 188–195, 2005. View at Publisher · View at Google Scholar
  7. K. D. Cummings, J. C. Garland, and D. B. Tanner, “Optical properties of a small-particle composite,” Physical Review B, vol. 30, no. 8, pp. 4170–4182, 1984. View at Publisher · View at Google Scholar
  8. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” Journal of Applied Physics, vol. 79, no. 3, pp. 1244–1249, 1996. View at Publisher · View at Google Scholar
  9. A. K. Sharma, J. F. Muth, A. Kvit, J. Narayan, and R. M. Kolbas, “Optical and structural characteristics of gold nanocrystallites embedded in a dielectric matrix,” in Proceedings of the Materials Research Society Symposium J, vol. 617, Boston, Mass, USA, November 2000, 2.7.1.
  10. A. Polman, E. Snoeks, G. N. van den Hoven et al., “Ion beam synthesis of planar opto-electronic devices,” Nuclear Instruments and Methods in Physics Research B, vol. 106, no. 1–4, pp. 393–399, 1995. View at Publisher · View at Google Scholar
  11. X. Batlle and A. Labarta, “Finite-size effects in fine particles: magnetic and transport properties,” Journal of Physics D, vol. 35, no. 6, pp. R15–R42, 2002. View at Publisher · View at Google Scholar
  12. S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, “New CoPt/Ag films for high density recording media,” Journal of Applied Physics, vol. 85, pp. 4304–4306, 1999. View at Publisher · View at Google Scholar
  13. M. Yu, Y. Liu, A. Moser, D. Weller, and D. J. Sellmyer, “Nanocomposite CoPt:C films for extremely high-density recording,” Applied Physics Letters, vol. 75, no. 25, pp. 3992–3994, 1999. View at Publisher · View at Google Scholar
  14. T. Morikawa, M. Suzuki, and Y. Taga, “Soft magnetic properties of Co-Cr-O granular films,” Journal of Applied Physics, vol. 83, pp. 6664–6666, 1998. View at Publisher · View at Google Scholar
  15. S. Mitani, H. Fujimori, K. Takanashi et al., “Tunnel-MR and spin electronics in metal-nonmetal granular systems,” Journal of Magnetism and Magnetic Materials, vol. 198-199, pp. 179–184, 1999. View at Publisher · View at Google Scholar
  16. B. J. Hattink, A. Labarta, M. García del Muro, X. Batlle, F. Sánchez, and M. Varela, “Competing tunneling and capacitive paths in Co-ZrO2 granular thin films,” Physical Review B, vol. 67, no. 3, Article ID 033402, 4 pages, 2003. View at Publisher · View at Google Scholar
  17. I. Hrianca, C. Caizer, and Z. Schlett, “Dynamic magnetic behavior of Fe3O4 colloidal nanoparticles,” Journal of Applied Physics, vol. 92, no. 4, pp. 2125–2132, 2002. View at Publisher · View at Google Scholar
  18. C. D. Lorenz and R. M. Ziff, “Precise determination of the critical percolation threshold for the three-dimensional ‘Swiss cheese’ model using a growth algorithm,” Journal of Chemical Physics, vol. 114, no. 8, pp. 3659–3661, 2001. View at Publisher · View at Google Scholar