Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2008 (2008), Article ID 516286, 8 pages
http://dx.doi.org/10.1155/2008/516286
Research Article

The Amphiphilic Self-Assembling Peptide EAK16-I as a Potential Hydrophobic Drug Carrier

1Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, No.1 Ke Yuan 4th Street, Gao Peng Road, Chengdu, Sichuan 610041, China
2State Key Lab of Biotherapy of Human Diseases, Cancer Center, West China Medical School, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
3College of Life Science, Sichuan University, No. 24, South Section, First Ring Road, Chengdu, Sichuan 610064, China
4Center for Biomedical Engineering NE47-378, Massachusetts Institute of Technology, 500 Technology Square, Main Street, Cambridge, MA 02139-4307, USA

Received 30 March 2008; Accepted 18 June 2008

Academic Editor: Zhenzhong Yang

Copyright © 2008 Jing Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Gershanik and S. Benita, “Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 50, no. 1, pp. 179–188, 2000. View at Publisher · View at Google Scholar
  2. X. Zhao and S. Zhang, “Molecular designer self-assembling peptides,” Chemical Society Reviews, vol. 35, no. 11, pp. 1105–1110, 2006. View at Publisher · View at Google Scholar
  3. S. Zhang, T. C. Holmes, C. Lockshin, and A. Rich, “Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 8, pp. 3334–3338, 1993. View at Publisher · View at Google Scholar
  4. S. Zhang, T. C. Holmes, C. M. DiPersio, R. O. Hynes, X. Su, and A. Rich, “Self-complementary oligopeptide matrices support mammalian cell attachment,” Biomaterials, vol. 16, no. 18, pp. 1385–1393, 1995. View at Publisher · View at Google Scholar
  5. J. Kisiday, M. Jin, B. Kurz et al., “Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 15, pp. 9996–10001, 2002. View at Publisher · View at Google Scholar
  6. S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, and A. M. Belcher, “Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly,” Nature, vol. 405, no. 6787, pp. 665–668, 2000. View at Publisher · View at Google Scholar
  7. Y. Nagai, L. D. Unsworth, S. Koutsopoulos, and S. Zhang, “Slow release of molecules in self-assembling peptide nanofiber scaffold,” Journal of Controlled Release, vol. 115, no. 1, pp. 18–25, 2006. View at Publisher · View at Google Scholar
  8. C. Keyes-Baig, J. Duhamel, S.-Y. Fung, J. Bezaire, and P. Chen, “Self-assembling peptide as a potential carrier of hydrophobic compounds,” Journal of the American Chemical Society, vol. 126, no. 24, pp. 7522–7532, 2004. View at Publisher · View at Google Scholar
  9. S. Y. Fung, H. Yang, and P. Chen, “Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide,” Colloids and Surfaces B, vol. 55, no. 2, pp. 200–211, 2007. View at Publisher · View at Google Scholar
  10. S. Jun, Y. Hong, H. Imamura, B.-Y. Ha, J. Bechhoefer, and P. Chen, “Self-assembly of the ionic peptide EAK16: the effect of charge distributions on self-assembly,” Biophysical Journal, vol. 87, no. 2, pp. 1249–1259, 2004. View at Publisher · View at Google Scholar
  11. Y. Hong, L. S. Lau, R. L. Legge, and P. Chen, “Critical self-assembly concentration of an ionic-complementary peptide EAK16-I,” The Journal of Adhesion, vol. 80, no. 10-11, pp. 913–931, 2004. View at Publisher · View at Google Scholar
  12. Y. Xu and F. C. Szoka Jr., “Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection,” Biochemistry, vol. 35, no. 18, pp. 5616–5623, 1996. View at Publisher · View at Google Scholar
  13. M. Wilhelm, C.-L. Zhao, Y. Wang et al., “Poly(styrene-ethylene oxide) block copolymer micelle formation in water: a fluorescence probe study,” Macromolecules, vol. 24, no. 5, pp. 1033–1040, 1991. View at Publisher · View at Google Scholar
  14. G. P. L'Heureux and M. Fragata, “Micropolarities of lipid bilayers and micelles. 5. Localization of pyrene in small unilamellar phosphatidylcholine vesicles,” Biophysical Chemistry, vol. 30, no. 3, pp. 293–301, 1988. View at Publisher · View at Google Scholar
  15. S. Pandey, R. A. Redden, A. E. Hendricks, K. A. Fletcher, and C. P. Palmer, “Characterization of the solvation environment provided by dilute aqueous solutions of novel siloxane polysoaps using the fluorescence probe pyrene,” Journal of Colloid and Interface Science, vol. 262, no. 2, pp. 579–587, 2003. View at Publisher · View at Google Scholar
  16. C. Gao, H. Qian, S. Wang, D. Yan, W. Chen, and G. Yu, “Self-association of hyperbranched poly(sulfone-amine) in water: studies with pyrene-fluorescence probe and fluorescence label,” Polymer, vol. 44, no. 5, pp. 1547–1552, 2003. View at Publisher · View at Google Scholar
  17. M. R. Vigil, J. Bravo, T. D. Z. Atvars, and J. Baselga, “Photochemical sensing of semicrystalline morphology in polymers: pyrene in polyethylene,” Macromolecules, vol. 30, no. 17, pp. 4871–4876, 1997. View at Publisher · View at Google Scholar
  18. J.-H. Kim, M. M. Domach, and R. D. Tilton, “Pyrene micropartitioning and solubilization by sodium dodecyl sulfate complexes with poly(ethylene glycol),” Journal of Physical Chemistry B, vol. 103, no. 48, pp. 10582–10590, 1999. View at Publisher · View at Google Scholar
  19. D. Daems, M. Van den Zegel, N. Boens, and F. C. De Schryver, “Fluorescence decay of pyrene in small and large unilamellar L, α-dipalmitoylphosphatidylcholine vesicles above and below the phase transition temperature,” European Biophysics Journal, vol. 12, no. 2, pp. 97–105, 1985. View at Publisher · View at Google Scholar
  20. S. A. French, P. R. Territo, and R. S. Balaban, “Correction for inner filter effects in turbid samples: fluorescence assays of mitochondrial NADH,” American Journal of Physiology, vol. 275, no. 3, pp. C900–C909, 1998. View at Google Scholar