Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2010 (2010), Article ID 186486, 11 pages
http://dx.doi.org/10.1155/2010/186486
Research Article

Stable Aqueous Suspension and Self-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes

1Composite Materials and Structures Center, Michigan State University, East Lansing, MI 48824-1226, USA
2Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824-1226, USA

Received 1 March 2010; Accepted 7 May 2010

Academic Editor: Rakesh Joshi

Copyright © 2010 Jue Lu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. T. Hammond, “Form and function in multilayer assembly: new applications at the nanoscale,” Advanced Materials, vol. 16, no. 15, pp. 1271–1293, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Ishibashi, S. Moriyama, D. Tsuya, T. Fuse, and M. Suzuki, “Quantum-dot nanodevices with carbon nanotubes,” Journal of Vacuum Science and Technology A, vol. 24, no. 4, pp. 1349–1355, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lee, J. Im, B. Y. Lee et al., “Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires,” Nature Nanotechnology, vol. 1, no. 1, pp. 66–71, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Lee, J. Zhang, H. Wang, and D. P. Wilkinson, “Progress in the synthesis of carbon nanotube- and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis,” Journal of Applied Electrochemistry, vol. 36, no. 5, pp. 507–522, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Lynam, S. E. Moulton, and G. G. Wallace, “Carbon-nanotube biofibers,” Advanced Materials, vol. 19, no. 9, pp. 1244–1248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Lin, W. Yantasee, and J. Wang, “Carbon nanotubes (CNTs) for the development of electrochemical biosensors,” Frontiers in Bioscience, vol. 10, pp. 492–505, 2005. View at Google Scholar · View at Scopus
  7. C. M. Welch and R. G. Compton, “The use of nanoparticles in electroanalysis: a review,” Analytical and Bioanalytical Chemistry, vol. 384, no. 3, pp. 601–619, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. C. Ferrari, J. C. Meyer, V. Scardaci et al., “Raman spectrum of graphene and graphene layers,” Physical Review Letters, vol. 97, no. 18, Article ID 187401, 4 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Li, W. Cai, J. An et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. D. D. L. Chung, “Exfoliation of graphite,” Journal of Materials Science, vol. 22, no. 12, pp. 4190–4198, 1987. View at Publisher · View at Google Scholar · View at Scopus
  12. W.-X. Chen, J. Y. Lee, and Z. Liu, “Preparation of Pt and PtRu nanoparticles supported on carbon nanotubes by microwave-assisted heating polyol process,” Materials Letters, vol. 58, no. 25, pp. 3166–3169, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Fukushima, “Graphite nanoreinforcements in polymer nanocomposites,” in PhD Dissertation in Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Mich, USA, 2003. View at Google Scholar
  14. S. Stankovich, D. A. Dikin, G. H. B. Dommett et al., “Graphene-based composite materials,” Nature, vol. 442, no. 7100, pp. 282–286, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. I.-H. Do, “Metal decoration of exfoliated graphite nanoplatelets (xGnP) for fuel cell applications,” in PhD Dissertation in Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Mich, USA, 2006. View at Google Scholar
  16. J. Lu, I. Do, L. T. Drzal, R. M. Worden, and I. Lee, “Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response,” ACS Nano, vol. 2, no. 9, pp. 1825–1832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Lu, L. T. Drzal, R. M. Worden, and I. Lee, “Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets Nafion membrane,” Chemistry of Materials, vol. 19, no. 25, pp. 6240–6246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Zhao, C. Song, and P. E. Pehrsson, “Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification,” Journal of the American Chemical Society, vol. 124, no. 42, pp. 12418–12419, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. E. T. Mickelson, I. W. Chiang, J. L. Zimmerman et al., “Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents,” Journal of Physical Chemistry B, vol. 103, no. 21, pp. 4318–4322, 1999. View at Google Scholar · View at Scopus
  20. V. C. Moore, M. S. Strano, E. H. Haroz et al., “Individually suspended single-walled carbon nanotubes in various surfactants,” Nano Letters, vol. 3, no. 10, pp. 1379–1382, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, vol. 277, no. 5330, pp. 1232–1237, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Wang, H.-X. Huang, A.-R. Liu et al., “Layer-by-layer assembly of single-walled carbon nanotube-poly(viologen) derivative multilayers and their electrochemical properties,” Carbon, vol. 44, no. 11, pp. 2115–2121, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Cassagneau and J. H. Fendler, “High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes,” Advanced Materials, vol. 10, no. 11, pp. 877–881, 1998. View at Google Scholar · View at Scopus
  24. T. Cassagneau, F. Guérin, and J. H. Fendler, “Preparation and characterization of ultrathin films layer-by-layer self-assembled from graphite oxide nanoplatelets and polymers,” Langmuir, vol. 16, no. 18, pp. 7318–7324, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. N. A. Kotov, I. Dékány, and J. H. Fendler, “Ultrathin graphite oxide-polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states,” Advanced Materials, vol. 8, no. 8, pp. 637–641, 1996. View at Google Scholar · View at Scopus
  26. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin et al., “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chemistry of Materials, vol. 11, no. 3, pp. 771–778, 1999. View at Google Scholar · View at Scopus
  27. L. T. Drzal and H. Fukushima, “Expanded graphite and products produced therefrom,” 2004, US Patent application 20040127621. View at Google Scholar
  28. W. N. Reynolds, Physical Properties of Graphite, Elsevier, Amsterdam, The Netherlands, 1968.
  29. S. Stankovich, R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, “Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate),” Journal of Materials Chemistry, vol. 16, no. 2, pp. 155–158, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Schneider, M. Brinkmann, and H. Möhwald, “Adsorption of polyethylenimine on graphite: an atomic force microscopy study,” Macromolecules, vol. 36, no. 25, pp. 9510–9518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. V. K. Paruchuri, A. V. Nguyen, and J. D. Miller, “Zeta-potentials of self-assembled surface micelles of ionic surfactants adsorbed at hydrophobic graphite surfaces,” Colloids and Surfaces A, vol. 250, no. 1–3, pp. 519–526, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. V. A. Sinani, M. K. Gheith, A. A. Yaroslavov et al., “Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations,” Journal of the American Chemical Society, vol. 127, no. 10, pp. 3463–3472, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Reich and C. Thomsen, “Raman spectroscopy of graphite,” Philosophical Transactions of the Royal Society A, vol. 362, no. 1824, pp. 2271–2288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Tuinstra and J. L. Koenig, “Raman spectrum of graphite,” Journal of Chemical Physics, vol. 53, no. 3, pp. 1126–1130, 1970. View at Google Scholar · View at Scopus
  35. J. Park and P. T. Hammond, “Polyelectrolyte multilayer formation on neutral hydrophobic surfaces,” Macromolecules, vol. 38, no. 25, pp. 10542–10550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Palumbo, K. U. Lee, B. T. Ahn et al., “Electrical investigations of layer-by-layer films of carbon nanotubes,” Journal of Physics D, vol. 39, no. 14, pp. 3077–3085, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Paloniemi, M. Lukkarinen, T. Ääritalo et al., “Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes,” Langmuir, vol. 22, no. 1, pp. 74–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. M. Barnes, X. Wu, J. Zhou et al., “Single-wall carbon nanotube networks as a transparent back contact in CdTe solar cells,” Applied Physics Letters, vol. 90, no. 24, Article ID 243503, 3 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Schindler, J. Brill, N. Fruehauf, J. P. Novak, and Z. Yan IV, “Solution-deposited carbon nanotube layers for flexible display applications,” Physica E: Low-Dimensional Systems and Nanostructures, vol. 37, no. 1-2, pp. 119–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Wu, Z. Chen, X. Du et al., “Transparent, conductive carbon nanotube films,” Science, vol. 305, no. 5688, pp. 1273–1276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. T. R. Hendricks, J. Lu, L. T. Drzal, and I. Lee, “Intact pattern transfer of conductive exfoliated graphite nanoplatelet composite films to polyelectrolyte multilayer platforms,” Advanced Materials, vol. 20, no. 10, pp. 2008–2012, 2008. View at Publisher · View at Google Scholar · View at Scopus