Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2010, Article ID 352746, 13 pages
http://dx.doi.org/10.1155/2010/352746
Research Article

Environmental Degradation and Durability of Epoxy-Clay Nanocomposites

1Mechanics of Advanced Materials Laboratory, School of Mechanical and Aerospace Engineering, Oklahoma State University, 218 Helmerich Research Center, 700 N. Greenwood Avenue, Tulsa, OK 74106-0700, USA
2Laboratory for Nanotribology and Wear Mechanics, Department of Mechanical Engineering, State University of New York, 131 Light Engineering, Stony Brook, NY 11794-2300, USA

Received 17 December 2009; Accepted 2 June 2010

Academic Editor: Gaurav Mago

Copyright © 2010 Raman P. Singh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Pritchard, Reinforced Plastics Durability, Woodhead Publishing, Cambridge, UK, 1998.
  2. J. W. Chin, T. Nguyen, and K. Aouadi, “Effects of environmental exposure on Fiber-Reinforced Plastic (FRP) materials used in construction,” Journal of Composites Technology and Research, vol. 19, no. 4, pp. 205–213, 1997. View at Google Scholar · View at Scopus
  3. B. Ranby and J. Rabek, Photodegradation, Photo-Oxidation and Photostabilization of Polymers, John Wiley & Sons, London, UK, 1975.
  4. W. B. Liau and F. P. Tseng, “The effect of long-term ultraviolet light irradiation on polymer matrix composites,” Polymer Composites, vol. 19, no. 4, pp. 440–445, 1998. View at Google Scholar · View at Scopus
  5. K.-B. Shin, C.-G. Kim, C.-S. Hong, and H.-H. Lee, “Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments,” Composites Part B, vol. 31, no. 3, pp. 223–235, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. B. G. Kumar, R. P. Singh, and T. Nakamura, “Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation,” Journal of Composite Materials, vol. 36, no. 24, pp. 2713–2733, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. A. W. Signor, M. R. VanLandingham, and J. W. Chin, “Effects of ultraviolet radiation exposure on vinyl ester resins: characterization of chemical, physical and mechanical damage,” Polymer Degradation and Stability, vol. 79, no. 2, pp. 359–368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Shen and G. S. Springer, “Moisture absorption and desorption of composite materials,” Journal of Composite Materials, vol. 10, no. 1, pp. 2–20, 1976. View at Google Scholar · View at Scopus
  9. Y. Weitsman, Fatigue of Composite Materials, Elsevier, New York, NY, USA, 1991.
  10. Q. Zheng and R. J. Morgan, “Synergisitc thermal-moisture damage mechanisms of epoxies and their carbon fiber composites,” Journal of Composite Materials, vol. 27, no. 15, pp. 1465–14789, 1993. View at Google Scholar · View at Scopus
  11. R. D. Adams and M. M. Singh, “The dynamic properties of fibre-reinforced polymers exposed to hot, wet conditions,” Composites Science and Technology, vol. 56, no. 8, pp. 977–997, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. H. S. Choi, K. J. Ahn, J.-D. Nam, and H. J. Chun, “Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments,” Composites Part A, vol. 32, no. 5, pp. 709–720, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. C. Soutis and D. Turkmen, “Moisture and temperature effects of the compressive failure of CFRP unidirectional laminates,” Journal of Composite Materials, vol. 31, no. 8, pp. 832–849, 1997. View at Google Scholar · View at Scopus
  14. G. Sala, “Composite degradation due to fluid absorption,” Composites Part B, vol. 31, no. 5, pp. 357–373, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Mago, F. T. Fisher, and D. M. Kalyon, “Effects of multiwalled carbon nanotubes on the shear-induced crystallization behavior of poly(butylene terephthalate),” Macromolecules, vol. 41, no. 21, pp. 8103–8113, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. E. T. Thostenson, C. Li, and T.-W. Chou, “Nanocomposites in context,” Composites Science and Technology, vol. 65, no. 3-4, pp. 491–516, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. A. Vaia and E. P. Giannelis, “Polymer nanocomposites: status and opportunities,” MRS Bulletin, vol. 26, no. 5, pp. 394–401, 2001. View at Google Scholar · View at Scopus
  18. T. Pinnavaia, T. Lan, Z. Wang, H. Shi, and P. D. Kaviratna, Nanotechnology, vol. 622 of ACS Symposium Series, American Chemical Society, Washington, DC, USA, 1996.
  19. R. Krishnamoorti and R. A. Vaia, “Polymer nanocomposites: synthesis, characterization, and modeling,” in Proceedings of the 219th National Meeting of the American Chemical Society, San Francisco, Calif, USA, 2000.
  20. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, “Characterization and properties of nylon 6. Clay hybrid,” in Proceedings of the ACS Division of Polymer Chemistry Meeting, pp. 651–652, Washington, DC, USA, August 1990. View at Scopus
  21. M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Materials Science and Engineering R, vol. 28, no. 1, pp. 1–63, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. O. Becker, R. Varley, and G. Simon, “Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins,” Polymer, vol. 43, no. 16, pp. 4365–4373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. D. Ratna, N. R. Manoj, R. Varley, R. K. Singh Raman, and G. P. Simon, “Clay-reinforced epoxy nanocomposites,” Polymer International, vol. 52, no. 9, pp. 1403–1407, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. C. Zunjarrao, R. Sriraman, and R. P. Singh, “Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites,” Journal of Materials Science, vol. 41, no. 8, pp. 2219–2228, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Ogasawara, Y. Ishida, and T. Ishikawa, “Helium gas permeability of montmorillonite dispersed nanocomposites,” in Proceedings of the 11th US-Japan Conference on Composite Materials, Yamagata, Japan, 2004.
  26. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, “Sorption of water in nylon 6-clay hybrid,” Journal of Applied Polymer Science, vol. 49, no. 7, pp. 1259–1264, 1993. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Lan and T. J. Pinnavaia, “Clay-reinforced epoxy nanocomposites,” Chemistry of Materials, vol. 6, no. 12, pp. 2216–2219, 1994. View at Google Scholar · View at Scopus
  28. T. Hwang, L. Pu, S. W. Kim, Y.-S. Oh, and J.-D. Nam, “Synthesis and barrier properties of poly(vinylidene chloride-co-acrylonitrile)/SiO2 hybrid composites by sol-gel process,” Journal of Membrane Science, vol. 345, no. 1-2, pp. 90–96, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. J.-K. Kim, C. Hu, R. S. C. Woo, and M.-L. Sham, “Moisture barrier characteristics of organoclay-epoxy nanocomposites,” Composites Science and Technology, vol. 65, no. 5, pp. 805–813, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. “Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials by four-point bending,” ASTM D6272–10, American Society for Testing and Materials, 2010.
  31. “Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials,” ASTM D5045, American Society for Testing and Materials, 1999.
  32. T. L. Anderson, “Fracture mechanics: fundamentals and applications,” CRC Press 2004.
  33. R. S. C. Woo, Y. Chen, H. Zhu, J. Li, J.-K. Kim, and C. K. Y. Leung, “Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part I: photo-degradation,” Composites Science and Technology, vol. 67, no. 15-16, pp. 3448–3456, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. R. S. C. Woo, H. Zhu, C. K. Y. Leung, and J.-K. Kim, “Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure. Part II: residual mechanical properties,” Composites Science and Technology, vol. 68, no. 9, pp. 2149–2155, 2008. View at Publisher · View at Google Scholar · View at Scopus