Table of Contents Author Guidelines Submit a Manuscript
Journal of Nanomaterials
Volume 2011, Article ID 105138, 8 pages
http://dx.doi.org/10.1155/2011/105138
Research Article

Single Nucleotide Polymorphism Detection Using Au-Decorated Single-Walled Carbon Nanotube Field Effect Transistors

1NanoBio Fusion Research Center, Korea Research Institute of Chemical Technology, Daejeon 305-343, Republic of Korea
2Regional Innovation Agency, Jeonbuk Technopark, Jeonju 561-844, Republic of Korea
3Panagene Inc., Daejeon 305-510, Republic of Korea
4Ucaretron Inc., Dongiltechno Building C, Anyang 431-716, Republic of Korea

Received 14 June 2010; Revised 3 September 2010; Accepted 10 September 2010

Academic Editor: Jianyu Huang

Copyright © 2011 Keum-Ju Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. J. Welsh and G. Powis, “Toward personalized theraphy for cancer,” in Current Clinical Oncology: Targeted Cancer Theraphy, R. Kurzrock and M. Markman, Eds., pp. 411–412, Humana Press, Totowa, NJ, USA, 2008. View at Google Scholar
  2. F. Patolsky, A. Lichtenstein, and I. Willner, “Detection of single-base DNA mutations by enzyme-amplified electronic transduction,” Nature Biotechnology, vol. 19, no. 3, pp. 253–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Pouthas, C. Gentil, D. Côte, and U. Bockelmann, “DNA detection on transistor arrays following mutation-specific enzymatic amplification,” Applied Physics Letters, vol. 84, no. 9, pp. 1594–1596, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Xiao, X. Qu, K. W. Plaxco, and A. J. Heeger, “Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot,” Journal of the American Chemical Society, vol. 129, no. 39, pp. 11896–11897, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Liu, Y. Wan, V. Gau et al., “An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets,” Journal of the American Chemical Society, vol. 130, no. 21, pp. 6820–6825, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-specific label-free DNA sensors based on silicon nanowires,” Nano Letters, vol. 4, no. 2, pp. 245–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. J.-I. Hahm and C. M. Lieber, “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,” Nano Letters, vol. 4, no. 1, pp. 51–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Star, E. Tu, J. Niemann, J.-C. P. Gabriel, C. S. Joiner, and C. Valcke, “Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 4, pp. 921–926, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Besteman, J.-O. Lee, F. G. M. Wiertz, H. A. Heering, and C. Dekker, “Enzyme-coated carbon nanotubes as single-molecule biosensors,” Nano Letters, vol. 3, no. 6, pp. 727–730, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. H.-M. So, K. Won, Y. H. Kim et al., “Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements,” Journal of the American Chemical Society, vol. 127, no. 34, pp. 11906–11907, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Zheng, A. Jagota, E. D. Semke et al., “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Materials, vol. 2, no. 5, pp. 338–342, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. W. Zhao, Y. Gao, M. A. Brook, and Y. Li, “Wrapping single-walled carbon nanotubes with long single-stranded DNA molecules produced by rolling circle amplification,” Chemical Communications, no. 34, pp. 3582–3584, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, and M. S. Strano, “Detection of DNA hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes,” Nano Letters, vol. 6, no. 3, pp. 371–375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. B.-K. Kim, N. Park, P. S. Na et al., “The effect of metal cluster coatings on carbon nanotubes,” Nanotechnology, vol. 17, no. 2, pp. 496–500, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. D. R. Kauffman and A. Star, “Chemically induced potential barriers at the carbon nanotube-metal nanoparticle interface,” Nano Letters, vol. 7, no. 7, pp. 1863–1868, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. R. Byon and H. C. Choi, “Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased schottky contact area for highly sensitive biosensor applications,” Journal of the American Chemical Society, vol. 128, no. 7, pp. 2188–2189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldi, and M. Prato, “Decorating carbon nanotubes with metal or semiconductor nanoparticles,” Journal of Materials Chemistry, vol. 17, no. 26, pp. 2679–2694, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. H. C. Choi, M. Shim, S. Bangsaruntip, and H. Dai, “Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes,” Journal of the American Chemical Society, vol. 124, no. 31, pp. 9058–9059, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. B. M. Quinn, C. Dekker, and S. G. Lemay, “Electrodeposition of noble metal nanoparticles on carbon nanotubes,” Journal of the American Chemical Society, vol. 127, no. 17, pp. 6146–6147, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. B. M. Quinn and S. G. Lemay, “Single-walled carbon nanotubes as templates and interconnects for nanoelectrodes,” Advanced Materials, vol. 18, no. 7, pp. 855–859, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. Y.-S. Lo, D. H. Nam, H.-M. So et al., “Oriented immobilization of antibody fragments on ni-decorated single-walled carbon nanotube devices,” ACS Nano, vol. 3, no. 11, pp. 3649–3655, 2009. View at Publisher · View at Google Scholar
  22. D. S. Kim, T. Lee, and K. E. Geckeler, “Hole-doped single-walled carbon nanotubes: ornamenting with gold nanoparticles in water,” Angewandte Chemie, vol. 45, no. 1, pp. 104–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Huang and Y. Chen, “Ultrasensitive fluorescence detection of single protein molecules manipulated electrically on Au nanowire,” Nano Letters, vol. 8, no. 9, pp. 2829–2833, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Letters, vol. 7, no. 7, pp. 2101–2107, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Shakeel, S. Karim, and A. Ali, “Peptide nucleic acid (PNA)—a review,” Journal of Chemical Technology and Biotechnology, vol. 81, no. 6, pp. 892–899, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wang, “DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review,” Biosensors and Bioelectronics, vol. 13, no. 7-8, pp. 757–762, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. I. Y. Wong and N. A. Melosh, “Directed hybridization and melting of DNA linkers using counterion-screened electric fields,” Nano Letters, vol. 9, no. 10, pp. 3521–3526, 2009. View at Publisher · View at Google Scholar
  28. P. C. Rusu and G. Brocks, “Surface dipoles and work functions of alkylthiolates and fluorinated alkylthiolates on Au(111),” Journal of Physical Chemistry B, vol. 110, no. 45, pp. 22628–22634, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. B.-K. Kim, J.-J. Kim, H.-M. So et al., “Carbon nanotube diode fabricated by contact engineering with self-assembled molecules,” Applied Physics Letters, vol. 89, no. 24, Article ID 243115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. I. Heller, A. M. Janssens, J. Männik, E. D. Minot, S. G. Lemay, and C. Dekker, “Identifying the mechanism of biosensing with carbon nanotube transistors,” Nano Letters, vol. 8, no. 2, pp. 591–595, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. D. C. Hansen, K. M. Hansen, T. L. Ferrell, and T. Thundat, “Discerning biomolecular interactions using Kelvin probe technology,” Langmuir, vol. 19, no. 18, pp. 7514–7520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Tang, S. Bansaruntip, N. Nakayama, E. Yenilmez, Y.-I. Chang, and Q. Wang, “Carbon nanotube DNA sensor and sensing mechanism,” Nano Letters, vol. 6, no. 8, pp. 1632–1636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. E. L. Gui, L.-J. Li, K. Zhang et al., “DNA sensing by field-effect transistors based on networks of carbon nanotubes,” Journal of the American Chemical Society, vol. 129, no. 46, pp. 14427–14432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Reina, M. Hofmann, D. Zhu, and J. Kong, “Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition,” Journal of Physical Chemistry C, vol. 111, no. 20, pp. 7292–7297, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. J. Mertens, C. Rogero, M. Calleja et al., “Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films,” Nature Nanotechnology, vol. 3, no. 5, pp. 301–307, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Cha, J. Shin, J.-H. Kim et al., “Biomolecular detection with a thin membrane transducer,” Lab on a Chip, vol. 8, no. 6, pp. 932–937, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Park, A. Germini, S. Sforza, R. Corradini, R. Marchelli, and W. Knoll, “Effect of ionic strength on PNA-DNA hybridization on surfaces and in solution,” Biointerphases, vol. 2, no. 2, pp. 80–88, 2007. View at Google Scholar